C Program for Fibonacci numbers

The Fibonacci numbers are the numbers in the following integer sequence.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……..

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

    Fn = Fn-1 + Fn-2

with seed values

   F0 = 0 and F1 = 1.

C

filter_none

edit
close

play_arrow

link
brightness_4
code

// Fibonacci Series using Recursion
#include <stdio.h>
int fib(int n)
{
    if (n <= 1)
        return n;
    return fib(n - 1) + fib(n - 2);
}
  
int main()
{
    int n = 9;
    printf("%d", fib(n));
    getchar();
    return 0;
}

chevron_right


Output:

34

Time Complexity: T(n) = T(n-1) + T(n-2) which is exponential.
We can observe that this implementation does a lot of repeated work (see the following recursion tree). So this is a bad implementation for nth Fibonacci number.

                         fib(5)   
                     /                  
               fib(4)                fib(3)   
             /                      /     
         fib(3)      fib(2)         fib(2)    fib(1)
        /             /           /      
  fib(2)   fib(1)  fib(1) fib(0) fib(1) fib(0)
  /    
fib(1) fib(0)

Extra Space: O(n) if we consider the function call stack size, otherwise O(1).

Method 2 ( Use Dynamic Programming )
We can avoid the repeated work done is the method 1 by storing the Fibonacci numbers calculated so far.

C

filter_none

edit
close

play_arrow

link
brightness_4
code

// Fibonacci Series using Dynamic Programming
#include <stdio.h>
  
int fib(int n)
{
    /* Declare an array to store Fibonacci numbers. */
    int f[n + 1];
    int i;
  
    /* 0th and 1st number of the series are 0 and 1*/
    f[0] = 0;
    f[1] = 1;
  
    for (i = 2; i <= n; i++) {
        /* Add the previous 2 numbers in the series
         and store it */
        f[i] = f[i - 1] + f[i - 2];
    }
  
    return f[n];
}
  
int main()
{
    int n = 9;
    printf("%d", fib(n));
    getchar();
    return 0;
}

chevron_right


Output:

34

Time Complexity: O(n)
Extra Space: O(n)

Method 3 ( Space Optimized Method 2 )
We can optimize the space used in method 2 by storing the previous two numbers only because that is all we need to get the next Fibonacci number in series.

C/C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Fibonacci Series using Space Optimized Method
#include <stdio.h>
int fib(int n)
{
    int a = 0, b = 1, c, i;
    if (n == 0)
        return a;
    for (i = 2; i <= n; i++) {
        c = a + b;
        a = b;
        b = c;
    }
    return b;
}
  
int main()
{
    int n = 9;
    printf("%d", fib(n));
    getchar();
    return 0;
}

chevron_right


Output:

34

Please refer complete article on Program for Fibonacci numbers for more details!



My Personal Notes arrow_drop_up


Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.