C Program For Fibonacci Numbers
The Fibonacci numbers are the numbers in the following integer sequence. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …….. In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation
Fn = Fn-1 + Fn-2
with seed values
F0 = 0 and F1 = 1.
C
// Fibonacci Series using Recursion #include <stdio.h> int fib( int n) { if (n <= 1) return n; return fib(n - 1) + fib(n - 2); } int main() { int n = 9; printf ( "%d" , fib(n)); getchar (); return 0; } |
34
Time Complexity: T(n) = T(n-1) + T(n-2) which is exponential. We can observe that this implementation does a lot of repeated work (see the following recursion tree). So this is a bad implementation for nth Fibonacci number.
fib(5) / fib(4) fib(3) / / fib(3) fib(2) fib(2) fib(1) / / / fib(2) fib(1) fib(1) fib(0) fib(1) fib(0) / fib(1) fib(0)
Extra Space: O(n) if we consider the function call stack size, otherwise O(1). Method 2 ( Use Dynamic Programming ) We can avoid the repeated work done is the method 1 by storing the Fibonacci numbers calculated so far.
C
// Fibonacci Series using Dynamic Programming #include <stdio.h> int fib( int n) { /* Declare an array to store Fibonacci numbers. */ int f[n + 1]; int i; /* 0th and 1st number of the series are 0 and 1*/ f[0] = 0; f[1] = 1; for (i = 2; i <= n; i++) { /* Add the previous 2 numbers in the series and store it */ f[i] = f[i - 1] + f[i - 2]; } return f[n]; } int main() { int n = 9; printf ( "%d" , fib(n)); getchar (); return 0; } |
34
Time Complexity: O(N)
Auxiliary Space: O(N)
Please refer complete article on Program for Fibonacci numbers for more details!
Please Login to comment...