Skip to content
Related Articles

Related Articles

Improve Article

Program to find GCD or HCF of two numbers

  • Difficulty Level : Easy
  • Last Updated : 22 Mar, 2021
Geek Week

GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest number that divides both of them. 

For example GCD of 20 and 28 is 4 and GCD of 98 and 56 is 14.

A simple solution is to find all prime factors of both numbers, then find intersection of all factors present in both numbers. Finally return product of elements in the intersection.
An efficient solution is to use Euclidean algorithm which is the main algorithm used for this purpose. The idea is, GCD of two numbers doesn’t change if smaller number is subtracted from a bigger number. 

C++




// C++ program to find GCD of two numbers
#include <iostream>
using namespace std;
// Recursive function to return gcd of a and b
int gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0)
       return b;
    if (b == 0)
       return a;
  
    // base case
    if (a == b)
        return a;
  
    // a is greater
    if (a > b)
        return gcd(a-b, b);
    return gcd(a, b-a);
}
  
// Driver program to test above function
int main()
{
    int a = 98, b = 56;
    cout<<"GCD of "<<a<<" and "<<b<<" is "<<gcd(a, b);
    return 0;
}

C




// C program to find GCD of two numbers
#include <stdio.h>
 
// Recursive function to return gcd of a and b
int gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0)
       return b;
    if (b == 0)
       return a;
 
    // base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return gcd(a-b, b);
    return gcd(a, b-a);
}
 
// Driver program to test above function
int main()
{
    int a = 98, b = 56;
    printf("GCD of %d and %d is %d ", a, b, gcd(a, b));
    return 0;
}

Java




// Java program to find GCD of two numbers
class Test
{
    // Recursive function to return gcd of a and b
    static int gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0)
          return b;
        if (b == 0)
          return a;
      
        // base case
        if (a == b)
            return a;
      
        // a is greater
        if (a > b)
            return gcd(a-b, b);
        return gcd(a, b-a);
    }
     
    // Driver method
    public static void main(String[] args)
    {
        int a = 98, b = 56;
        System.out.println("GCD of " + a +" and " + b + " is " + gcd(a, b));
    }
}

Python3




# Recursive function to return gcd of a and b
def gcd(a,b):
     
    # Everything divides 0
    if (a == 0):
        return b
    if (b == 0):
        return a
 
    # base case
    if (a == b):
        return a
 
    # a is greater
    if (a > b):
        return gcd(a-b, b)
    return gcd(a, b-a)
 
# Driver program to test above function
a = 98
b = 56
if(gcd(a, b)):
    print('GCD of', a, 'and', b, 'is', gcd(a, b))
else:
    print('not found')
 
# This code is contributed by Danish Raza

C#




// C# program to find GCD of two
// numbers
using System;
 
class GFG {
     
    // Recursive function to return
    // gcd of a and b
    static int gcd(int a, int b)
    {
         
        // Everything divides 0
        if (a == 0)
          return b;
        if (b == 0)
          return a;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return gcd(a - b, b);
             
        return gcd(a, b - a);
    }
     
    // Driver method
    public static void Main()
    {
        int a = 98, b = 56;
        Console.WriteLine("GCD of "
          + a +" and " + b + " is "
                      + gcd(a, b));
    }
}
 
// This code is contributed by anuj_67.

PHP




<?php
// PHP program to find GCD
// of two numbers
 
// Recursive function to
// return gcd of a and b
function gcd($a, $b)
{
 
    // Everything divides 0
    if ($a == 0)
       return $b;
    if ($b == 0)
       return $a;
 
    // base case
    if($a == $b)
        return $a ;
     
    // a is greater
    if($a > $b)
        return gcd( $a-$b , $b ) ;
 
    return gcd( $a , $b-$a ) ;
}
 
// Driver code
$a = 98 ;
$b = 56 ;
 
echo "GCD of $a and $b is ", gcd($a , $b) ;
 
// This code is contributed by Anivesh Tiwari
?>

Javascript




<script>
 
// Javascript program to find GCD of two numbers
 
// Recursive function to return gcd of a and b
function gcd(a, b)
{
    // Everything divides 0
    if (a == 0)
    return b;
    if (b == 0)
    return a;
 
    // base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return gcd(a-b, b);
    return gcd(a, b-a);
}
 
// Driver program to test above function
 
    let a = 98, b = 56;
    document.write("GCD of "+ a + " and " + b + " is " + gcd(a, b));
     
// This code is contributed by Mayank Tyagi
 
</script>

Output: 



GCD of 98 and 56 is 14

A more efficient solution is to use modulo operator in Euclidean algorithm .  

C++




// C++ program to find GCD of two numbers
#include <iostream>
using namespace std;
// Recursive function to return gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
     
}
  
// Driver program to test above function
int main()
{
    int a = 98, b = 56;
    cout<<"GCD of "<<a<<" and "<<b<<" is "<<gcd(a, b);
    return 0;
}

C




// C program to find GCD of two numbers
#include <stdio.h>
 
// Recursive function to return gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Driver program to test above function
int main()
{
    int a = 98, b = 56;
    printf("GCD of %d and %d is %d ", a, b, gcd(a, b));
    return 0;
}

Java




// Java program to find GCD of two numbers
class Test
{
    // Recursive function to return gcd of a and b
    static int gcd(int a, int b)
    {
      if (b == 0)
        return a;
      return gcd(b, a % b);
    }
     
    // Driver method
    public static void main(String[] args)
    {
        int a = 98, b = 56;
        System.out.println("GCD of " + a +" and " + b + " is " + gcd(a, b));
    }
}

Python3




# Recursive function to return gcd of a and b
def gcd(a,b):
     
    # Everything divides 0
    if (b == 0):
         return a
    return gcd(b, a%b)
 
# Driver program to test above function
a = 98
b = 56
if(gcd(a, b)):
    print('GCD of', a, 'and', b, 'is', gcd(a, b))
else:
    print('not found')
 
# This code is contributed by Danish Raza

C#




// C# program to find GCD of two
// numbers
using System;
 
class GFG {
     
    // Recursive function to return
    // gcd of a and b
    static int gcd(int a, int b)
    {     
       if (b == 0)
          return a;
       return gcd(b, a % b);
    }
     
    // Driver method
    public static void Main()
    {
        int a = 98, b = 56;
        Console.WriteLine("GCD of "
          + a +" and " + b + " is "
                      + gcd(a, b));
    }
}
 
// This code is contributed by anuj_67.

PHP




<?php
// PHP program to find GCD
// of two numbers
 
// Recursive function to
// return gcd of a and b
function gcd($a, $b)
{
    // Everything divides 0
    if($b==0)
        return $a ;
 
    return gcd( $b , $a % $b ) ;
}
 
// Driver code
$a = 98 ;
$b = 56 ;
 
echo "GCD of $a and $b is ", gcd($a , $b) ;
 
// This code is contributed by Anivesh Tiwari
?>

Javascript




<script>
 
// Javascript program to find GCD of two number
 
// Recursive function to return gcd of a and b
 
function gcd(a, b){
   
  // Everything divides 0
  if(b == 0){
    return a;
  }
   
  return gcd(b, a % b);
}
 
// Driver code
let a = 98;
let b = 56;
 
document.write(`GCD of ${a} and ${b} is ${gcd(a, b)}`);
 
// This code is contributed by _saurabh_jaiswal
 
</script>

Output: 

GCD of 98 and 56 is 14

The time complexity for the above algorithm is O(log(max(a,b))) the derivation for this is obtained from the analysis of the worst-case scenario. What we do is we ask what are the 2 least numbers that take 1 step, those would be (1,1). If we want to increase the number of steps to 2 while keeping the numbers as low as possible as we can take the numbers to be (1,2). Similarly, for 3 steps, the numbers would be (2,3), 4 would be (3,5), 5 would be (5,8). So we can notice a pattern here, for the nth step the numbers would be (fib(n),fib(n+1)).  So the worst-case time complexity would be O(n) where a>= fib(n) and b>= fib(n+1). 

Now Fibonacci series is an exponentially growing series where the ratio of nth/(n-1)th term approaches (sqrt(5)-1)/2 which is also called the golden ratio. So we can see that the time complexity of the algorithm increases linearly as the terms grow exponentially hence the time complexity would be log(max(a,b)).

Please refer GCD of more than two (or array) numbers to find HCF of more than two numbers.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Attention reader! All those who say programming isn’t for kids, just haven’t met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.




My Personal Notes arrow_drop_up
Recommended Articles
Page :