Program to find area of a triangle

Finding area using given sides:


Examples :

Input : a = 5, b = 7, c = 8
Output : Area of a triangle is 17.320508


Input : a = 3, b = 4, c = 5
Output : Area of a triangle is 6.000000

Area of a triangle can simply be evaluated using following formula.

Area = sqrt(s*(s-a)*(s-b)*(s-c))
where a, b and c are lengths of sides of
triangle and s = (a+b+c)/2

C++

// C++ Program to find the area
// of triangle
#include
using namespace std;

float findArea(float a, float b, float c)
{
// Length of sides must be positive
// and sum of any two sides
// must be smaller than third side.
if (a < 0 || b < 0 || c < 0 || (a + b <= c) || a + c <= b || b + c <= a) { cout << "Not a valid trianglen"; exit(0); } float s = (a + b + c) / 2; return sqrt(s * (s - a) * (s - b) * (s - c)); } // Driver Code int main() { float a = 3.0; float b = 4.0; float c = 5.0; cout << "Area is " << findArea(a, b, c); return 0; } // This code is contributed // by rathbhupendra [tabby title="C"]

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <stdio.h> 
#include <stdlib.h> 
  
float findArea(float a, float b, float c)
{
    // Length of sides must be positive and sum of any two sides
    // must be smaller than third side.
    if (a < 0 || b < 0 || c <0 || (a+b <= c) ||
        a+c <=b || b+c <=a)
    {
        printf("Not a valid trianglen");
        exit(0);
    }
    float s = (a+b+c)/2;
    return sqrt(s*(s-a)*(s-b)*(s-c));
}
  
int main()
{
    float a = 3.0;
    float b = 4.0;
    float c = 5.0;
  
    printf("Area is %f", findArea(a, b, c));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print
// Floyd's triangle
      
class Test
{
    static float findArea(float a, float b, float c)
    {
        // Length of sides must be positive and sum of any two sides
        // must be smaller than third side.
        if (a < 0 || b < 0 || c <0 || (a+b <= c) ||
            a+c <=b || b+c <=a)
        {
            System.out.println("Not a valid triangle");
            System.exit(0);
        }
        float s = (a+b+c)/2;
        return (float)Math.sqrt(s*(s-a)*(s-b)*(s-c));
    }
          
    // Driver method
    public static void main(String[] args) 
    {
        float a = 3.0f;
        float b = 4.0f;
        float c = 5.0f;
      
        System.out.println("Area is " + findArea(a, b, c));
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program to find the area 
# of triangle 
  
# Length of sides must be positive 
# and sum of any two sides 
def findArea(a,b,c): 
  
    # must be smaller than third side. 
    if (a < 0 or b < 0 or c < 0 or (a+b <= c) or (a+c <=b) or (b+c <=a) ): 
        print('Not a valid trianglen'
        return
          
    # calculate the semi-perimeter 
    s = (a + b + c) / 2
      
    # calculate the area 
    area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
    print('Area of a traingle is %f' %area) 
  
  
# Initialize first side of traingle 
a = 3.0
# Initialize second side of traingle 
b = 4.0
# Initialize Third side of traingle 
c = 5.0
findArea(a,b,c) 
  
# This code is contributed by Shariq Raza 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print
// Floyd's triangle
using System;
  
class Test {
      
    // Function to find area
    static float findArea(float a, float b,
                        float c)
    {
          
        // Length of sides must be positive
        // and sum of any two sides
        // must be smaller than third side.
        if (a < 0 || b < 0 || c <0 || 
        (a + b <= c) || a + c <=b || 
            b + c <=a)
        {
            Console.Write("Not a valid triangle");
            System.Environment.Exit(0);
        }
        float s = (a + b + c) / 2;
        return (float)Math.Sqrt(s * (s - a) * 
                            (s - b) * (s - c));
    }
          
    // Driver code
    public static void Main() 
    {
        float a = 3.0f;
        float b = 4.0f;
        float c = 5.0f;
      
        Console.Write("Area is " + findArea(a, b, c));
    }
}
  
// This code is contributed Nitin Mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
function findArea($a, $b, $c)
{
    // Length of sides must be positive
    // and sum of any two sides must
    // be smaller than third side.
    if ($a < 0 or $b < 0 or
        $c < 0 or ($a + $b <= $c) or
        $a + $c <= $b or $b + $c <= $a)
    {
        echo "Not a valid trianglen";
        exit(0);
    }
    $s = ($a + $b + $c) / 2;
    return sqrt($s * ($s - $a) * 
            ($s - $b) * ($s - $c));
}
  
// Driver Code
$a = 3.0;
$b = 4.0;
$c = 5.0;
  
echo "Area is ", findArea($a, $b, $c);
  
// This code is contributed anuJ_67.
?>

chevron_right



Output :

Area is 6

Finding area using coordinates:

If we are given coordinates of three corners, we can apply below Shoelace formula for area.

Area
=\frac{1}{2}\left | \sum_{i=1}^{n-1}x_iy_(_i+_1_)+x_ny1-\sum_{i=1}^{n-1}x_(_i+_1_)y_i-x_1y_n \right | 
 = | 1/2 [ (x1y2 + x2y3 + ... + xn-1yn + xny1) -
           (x2y1 + x3y2 + ... + xnyn-1 + x1yn) ] |

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to evaluate area of a polygon using
// shoelace formula
#include <bits/stdc++.h>
using namespace std;
   
// (X[i], Y[i]) are coordinates of i'th point.
double polygonArea(double X[], double Y[], int n)
{
    // Initialize area
    double area = 0.0;
   
    // Calculate value of shoelace formula
    int j = n - 1;
    for (int i = 0; i < n; i++)
    {
        area += (X[j] + X[i]) * (Y[j] - Y[i]);
        j = i;  // j is previous vertex to i
    }
   
    // Return absolute value
    return abs(area / 2.0);
}
   
// Driver program to test above function
int main()
{
    double X[] = {0, 2, 4};
    double Y[] = {1, 3, 7};
   
    int n = sizeof(X)/sizeof(X[0]);
   
    cout << polygonArea(X, Y, n);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to evaluate area of 
// a polygon usingshoelace formula
import java.io.*;
import java.math.*;
  
class GFG {
  
    // (X[i], Y[i]) are coordinates of i'th point.
    static double polygonArea(double X[], double Y[], int n)
    {
        // Initialize area
        double area = 0.0;
      
        // Calculate value of shoelace formula
        int j = n - 1;
        for (int i = 0; i < n; i++)
        {
            area += (X[j] + X[i]) * (Y[j] - Y[i]);
              
            // j is previous vertex to i
            j = i; 
        }
      
        // Return absolute value
        return Math.abs(area / 2.0);
    }
      
    // Driver program 
    public static void main (String[] args) 
    {
        double X[] = {0, 2, 4};
        double Y[] = {1, 3, 7};
  
        int n = X.length;
        System.out.println(polygonArea(X, Y, n));
    }
}
  
  
// This code is contributed
// by Nikita Tiwari.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to evaluate
# area of a polygon using
# shoelace formula
  
# (X[i], Y[i]) are coordinates of i'th point.
def polygonArea(X,Y, n) :
  
    # Initialize area
    area = 0.0
    
    # Calculate value of shoelace formula
    j = n - 1
    for i in range( 0, n) :
        area = area + (X[j] + X[i]) * (Y[j] - Y[i])
        j = # j is previous vertex to i
      
      
    # Return absolute value
    return abs(area // 2.0)
  
    
# Driver program to test above function
X = [0, 2, 4]
Y = [1, 3, 7]
  
n = len(X)
print(polygonArea(X, Y, n))
  
  
# This code is contributed
# by Nikita Tiwari.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to evaluate area of 
// a polygon usingshoelace formula
using System;
  
class GFG {
  
    // (X[i], Y[i]) are coordinates 
    // of i'th point.
    static double polygonArea(double []X,
                       double []Y, int n)
    {
        // Initialize area
        double area = 0.0;
      
        // Calculate value of shoelace
        // formula
        int j = n - 1;
        for (int i = 0; i < n; i++)
        {
            area += (X[j] + X[i]) * 
                        (Y[j] - Y[i]);
              
            // j is previous vertex to i
            j = i; 
        }
      
        // Return absolute value
        return Math.Abs(area / 2.0);
    }
      
    // Driver program 
    public static void Main () 
    {
        double []X = {0, 2, 4};
        double []Y = {1, 3, 7};
  
        int n = X.Length;
        Console.WriteLine(
                 polygonArea(X, Y, n));
    }
}
  
// This code is contributed by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to evaluate area of a 
// polygon using shoelace formula
  
// (X[i], Y[i]) are coordinates
// of i'th point.
function polygonArea( $X, $Y, $n)
{
      
    // Initialize area
    $area = 0.0;
  
    // Calculate value of 
    // shoelace formula
    $j = $n - 1;
    for ( $i = 0; $i < $n; $i++)
    {
        $area += ($X[$j] + $X[$i]) * 
                 ($Y[$j] - $Y[$i]);
                   
        // j is previous vertex to i
        $j = $i
    }
  
    // Return absolute value
    return abs($area / 2.0);
}
  
    // Driver Code
    $X = array(0, 2, 4);
    $Y = array(1, 3, 7);
    $n = count($X);
    echo polygonArea($X, $Y, $n);
  
// This code is contributed by anuj_67.
?>

chevron_right



Output :

2


My Personal Notes arrow_drop_up