Break the number into three parts

Given a really large number, break it into 3 whole numbers such that they sum up to the original number and count number of ways to do so.

Examples :

Input : 3
Output : 10
The possible combinations where the sum
of the numbers is equal to 3 are:
0+0+3 = 3
0+3+0 = 3
3+0+0 = 3
0+1+2 = 3
0+2+1 = 3
1+0+2 = 3
1+2+0 = 3
2+0+1 = 3
2+1+0 = 3
1+1+1 = 3

Input : 6
Output : 28

A total of 10 ways, so answer is 10.

Naive Approach: Try all combinations from 0 to the given number and check if they add upto the given number or not, if they do, increase the count by 1 and continue the process.

C/C++



// C++ program to count number of ways to break
// a number in three parts.
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
  
// Function to count number of ways
// to make the given number n
ll count_of_ways(ll n)
{
    ll count = 0;
    for (int i = 0; i <= n; i++)
        for (int j = 0; j <= n; j++)
            for (int k = 0; k <= n; k++)
                if (i + j + k == n)
                    count++;
    return count;
}
  
// Driver Function
int main()
{
    ll n = 3;
    cout << count_of_ways(n) << endl;
    return 0;
}

Java

// Java program to count number of ways to break
// a number in three parts
import java.io.*;
  
class GFG {
    // Function to count number of ways
    // to make the given number n
    static long count_of_ways(long n)
    {
        long count = 0;
        for (int i = 0; i <= n; i++)
            for (int j = 0; j <= n; j++)
                for (int k = 0; k <= n; k++)
                    if (i + j + k == n)
                        count++;
        return count;
    }
  
    // driver program
    public static void main(String[] args)
    {
        long n = 3;
        System.out.println(count_of_ways(n));
    }
}
  
// Contributed by Pramod Kumar

C#

// C# program to count number of ways 
// to break a number in three parts
using System;
  
class GFG {
      
    // Function to count number of ways
    // to make the given number n
    static long count_of_ways(long n)
    {
        long count = 0;
        for (int i = 0; i <= n; i++)
            for (int j = 0; j <= n; j++)
                for (int k = 0; k <= n; k++)
                    if (i + j + k == n)
                        count++;
        return count;
    }
  
    // driver program
    public static void Main()
    {
        long n = 3;
        Console.WriteLine(count_of_ways(n));
    }
}
  
// This code is Contributed by vt_m.

PHP

<?php
// PHP program to count number 
// of ways to break a number 
// in three parts.
  
// Function to count number of ways
// to make the given number n
function count_of_ways( $n)
{
    $count = 0;
    for ($i = 0; $i <= $n; $i++)
        for ($j = 0; $j <= $n; $j++)
            for ($k = 0; $k <= $n; $k++)
                if ($i + $j + $k == $n)
                    $count++;
    return $count;
}
  
// Driver Code
$n = 3;
echo count_of_ways($n);
  
// This code is Contributed by vt_m.
?>


Output :

10

Time Complexity : O(n3)

Efficient Approach: If we carefully observe the test cases then we realize that the number of ways to break a number n into 3 parts is equal to (n+1) * (n+2) / 2.

C/C++

// C++ program to count number of ways to break
// a number in three parts.
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
  
// Function to count number of ways
// to make the given number n
ll count_of_ways(ll n)
{
    ll count;
    count = (n + 1) * (n + 2) / 2;
    return count;
}
  
// Driver Function
int main()
{
    ll n = 3;
    cout << count_of_ways(n) << endl;
    return 0;
}

Java

// Java program to count number of ways to break
// a number in three parts
import java.io.*;
  
class GFG {
    // Function to count number of ways
    // to make the given number n
    static long count_of_ways(long n)
    {
        long count = 0;
        count = (n + 1) * (n + 2) / 2;
        return count;
    }
  
    // driver program
    public static void main(String[] args)
    {
        long n = 3;
        System.out.println(count_of_ways(n));
    }
}
  
// Contributed by Pramod Kumar

C#

// C# program to count number of ways to
// break a number in three parts
using System;
  
class GFG {
      
    // Function to count number of ways
    // to make the given number n
    static long count_of_ways(long n)
    {
        long count = 0;
        count = (n + 1) * (n + 2) / 2;
        return count;
    }
  
    // driver program
    public static void Main()
    {
        long n = 3;
        Console.WriteLine(count_of_ways(n));
    }
}
  
// This code is Contributed by vt_m.

PHP

<?php
// PHP program to count number 
// of ways to break a number
// in three parts.
  
// Function to count number of ways
// to make the given number n
function count_of_ways( $n)
{
    $count;
    $count = ($n + 1) * ($n + 2) / 2;
    return $count;
}
  
// Driver Code
$n = 3;
echo count_of_ways($n);
  
// This code is Contributed by vt_m.
?>


Output :

10

Time Complexity: O(1)

This article is contributed by Aditya Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : vt_m




Article Tags :

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

Recommended Posts:



3.2 Average Difficulty : 3.2/5.0
Based on 12 vote(s)






User Actions