Skip to content
Related Articles

Related Articles

Box plot and Histogram exploration on Iris data
  • Last Updated : 20 May, 2019

Attribute Information about data set:

Attribute Information:
   -> sepal length in cm
   -> sepal width in cm
   -> petal length in cm
   -> petal width in cm
   -> class: 
              Iris Setosa
              Iris Versicolour
              Iris Virginica

Number of Instances: 150 

Summary Statistics:
             Min  Max   Mean    SD   Class Correlation
   sepal length: 4.3  7.9   5.84  0.83    0.7826   
    sepal width: 2.0  4.4   3.05  0.43   -0.4194
   petal length: 1.0  6.9   3.76  1.76    0.9490  (high!)
    petal width: 0.1  2.5   1.20  0.76    0.9565  (high!)

Class Distribution: 33.3% for each of 3 classes.

To get the Iris Data click here.

Loading Libraries




import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Loading Data




data = pd.read_csv("Iris.csv")
  
print (data.head(10))

Output:



Description




data.describe()

Output:

Info




data.info()

Output:

 
Code #1: Histogram for Sepal Length




plt.figure(figsize = (10, 7))
x = data["SepalLengthCm"]
  
plt.hist(x, bins = 20, color = "green")
plt.title("Sepal Length in cm")
plt.xlabel("Sepal_Length_cm")
plt.ylabel("Count")

Output:

Code #2: Histogram for Sepal Width




plt.figure(figsize = (10, 7))
x = data.SepalWidthCm
  
plt.hist(x, bins = 20, color = "green")
plt.title("Sepal Width in cm")
plt.xlabel("Sepal_Width_cm")
plt.ylabel("Count")
  
plt.show()

Output:

Code #3: Histogram for Petal Length






plt.figure(figsize = (10, 7))
x = data.PetalLengthCm
  
plt.hist(x, bins = 20, color = "green")
plt.title("Petal Length in cm")
plt.xlabel("Petal_Length_cm")
plt.ylabel("Count")
  
plt.show()

Output:

Code #4: Histogram for Petal Width




plt.figure(figsize = (10, 7))
x = data.PetalWidthCm
  
plt.hist(x, bins = 20, color = "green")
plt.title("Petal Width in cm")
plt.xlabel("Petal_Width_cm")
plt.ylabel("Count")
  
plt.show()

Output:

Code #5: Data preparation for Box Plot




# removing Id column
new_data = data[["SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm"]]
print(new_data.head())

Output :

Code #6: Box Plot for Iris Data




plt.figure(figsize = (10, 7))
new_data.boxplot()

Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :