Skip to content
Related Articles

Related Articles

Box plot and Histogram exploration on Iris data
  • Last Updated : 20 May, 2019

Attribute Information about data set:

Attribute Information:
   -> sepal length in cm
   -> sepal width in cm
   -> petal length in cm
   -> petal width in cm
   -> class: 
              Iris Setosa
              Iris Versicolour
              Iris Virginica

Number of Instances: 150 

Summary Statistics:
             Min  Max   Mean    SD   Class Correlation
   sepal length: 4.3  7.9   5.84  0.83    0.7826   
    sepal width: 2.0  4.4   3.05  0.43   -0.4194
   petal length: 1.0  6.9   3.76  1.76    0.9490  (high!)
    petal width: 0.1  2.5   1.20  0.76    0.9565  (high!)

Class Distribution: 33.3% for each of 3 classes.

To get the Iris Data click here.

Loading Libraries




import numpy as np
import pandas as pd
import matplotlib.pyplot as plt


Loading Data




data = pd.read_csv("Iris.csv")
  
print (data.head(10))


Output:



Description




data.describe()


Output:

Info




data.info()


Output:

 
Code #1: Histogram for Sepal Length




plt.figure(figsize = (10, 7))
x = data["SepalLengthCm"]
  
plt.hist(x, bins = 20, color = "green")
plt.title("Sepal Length in cm")
plt.xlabel("Sepal_Length_cm")
plt.ylabel("Count")


Output:

Code #2: Histogram for Sepal Width




plt.figure(figsize = (10, 7))
x = data.SepalWidthCm
  
plt.hist(x, bins = 20, color = "green")
plt.title("Sepal Width in cm")
plt.xlabel("Sepal_Width_cm")
plt.ylabel("Count")
  
plt.show()


Output:

Code #3: Histogram for Petal Length






plt.figure(figsize = (10, 7))
x = data.PetalLengthCm
  
plt.hist(x, bins = 20, color = "green")
plt.title("Petal Length in cm")
plt.xlabel("Petal_Length_cm")
plt.ylabel("Count")
  
plt.show()


Output:

Code #4: Histogram for Petal Width




plt.figure(figsize = (10, 7))
x = data.PetalWidthCm
  
plt.hist(x, bins = 20, color = "green")
plt.title("Petal Width in cm")
plt.xlabel("Petal_Width_cm")
plt.ylabel("Count")
  
plt.show()


Output:

Code #5: Data preparation for Box Plot




# removing Id column
new_data = data[["SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm"]]
print(new_data.head())


Output :

Code #6: Box Plot for Iris Data




plt.figure(figsize = (10, 7))
new_data.boxplot()


Output :

machine-learning

My Personal Notes arrow_drop_up
Recommended Articles
Page :