Boundary Value Analysis : Nature of Roots of a Quadratic equation
Consider a problem for the determination of the nature of the roots of a quadratic equation where the inputs are 3 variables (a, b, c) and their values may be from the interval [0, 100]. The output may be one of the following depending on the values of the variables:
- Not a quadratic equation,
- Real roots,
- Imaginary roots,
- Equal roots
Our objective is to design the boundary value test cases. Boundary value analysis is a software testing technique in which tests are designed to include representatives of boundary values in a range. A boundary value analysis has a total of 4*n+1 distinct test cases, where n is the number of variables in a problem. Here we have to consider all three variables and design all the distinct possible test cases. We will have a total of 13 test cases as n = 3.
- Roots are real if (b2 – 4ac) > 0
- Roots are imaginary if (b2 – 4ac) < 0
- Roots are equal if (b2 – 4ac) = 0
- Equation is not quadratic if a = 0
How do we design the test cases ? For each variable we consider below 5 cases:
- amin = 0
- amin+1 = 1
- anominal = 50
- amax-1 = 99
- amax = 100
When we are considering these 5 cases for a variable, rest of the variables have the nominal values, like in the above case where the value of ‘a’ is varying from 0 to 100, the value of ‘b’ and ‘c’ will be taken as the nominal or average value. Similarly, when the values of variable ‘b’ are changing from 0 to 100, the values of ‘a’ and ‘c’ will be nominal or average i.e 50. The possible test cases for the nature of roots of a Quadratic Equation in a Boundary Value Analysis can be: Below is the program that verifies the test cases considered in the table shown above. The program takes user-defined inputs so that you can check for any of the test cases mentioned above.
C++
// C++ program to check the nature of the roots #include <bits/stdc++.h> using namespace std; // BVA for nature of roots of a quadratic equation void nature_of_roots( int a, int b, int c) { // If a = 0, D/2a will yield exception // Hence it is not a valid Quadratic Equation if (a == 0) { cout << "Not a Quadratic Equation" << endl; return ; } int D = b * b - 4 * a * c; // If D > 0, it will be Real Roots if (D > 0) { cout << "Real Roots" << endl; } // If D == 0, it will be Equal Roots else if (D == 0) { cout << "Equal Roots" << endl; } // If D < 0, it will be Imaginary Roots else { cout << "Imaginary Roots" << endl; } } // Function to check for all testcases void checkForAllTestCase() { cout << "Testcase" << "\ta\tb\tc\tActual Output" << endl; cout << endl; int a, b, c; int testcase = 1; while (testcase <= 13) { if (testcase == 1) { a = 0; b = 50; c = 50; } else if (testcase == 2) { a = 1; b = 50; c = 50; } else if (testcase == 3) { a = 50; b = 50; c = 50; } else if (testcase == 4) { a = 99; b = 50; c = 50; } else if (testcase == 5) { a = 100; b = 50; c = 50; } else if (testcase == 6) { a = 50; b = 0; c = 50; } else if (testcase == 7) { a = 50; b = 1; c = 50; } else if (testcase == 8) { a = 50; b = 99; c = 50; } else if (testcase == 9) { a = 50; b = 100; c = 50; } else if (testcase == 10) { a = 50; b = 50; c = 0; } else if (testcase == 11) { a = 50; b = 50; c = 1; } else if (testcase == 12) { a = 50; b = 50; c = 99; } else if (testcase == 13) { a = 50; b = 50; c = 100; } cout << "\t" << testcase << "\t" << a << "\t" << b << "\t" << c << "\t" ; nature_of_roots(a, b, c); cout << endl; testcase++; } } // Driver Code int main() { checkForAllTestCase(); return 0; } |
Java
// Java program to check the nature of the roots import java.util.*; class GFG { // BVA for nature of roots of a quadratic equation static void nature_of_roots( int a, int b, int c) { // If a = 0, D/2a will yield exception // Hence it is not a valid Quadratic Equation if (a == 0 ) { System.out.print( "Not a Quadratic Equation" + "\n" ); return ; } int D = b * b - 4 * a * c; // If D > 0, it will be Real Roots if (D > 0 ) { System.out.print( "Real Roots" + "\n" ); } // If D == 0, it will be Equal Roots else if (D == 0 ) { System.out.print( "Equal Roots" + "\n" ); } // If D < 0, it will be Imaginary Roots else { System.out.print( "Imaginary Roots" + "\n" ); } } // Function to check for all testcases static void checkForAllTestCase() { System.out.print( "Testcase" + "\ta\tb\tc\tActual Output" + "\n" ); System.out.println(); int a, b, c; a = b = c = 0 ; int testcase = 1 ; while (testcase <= 13 ) { if (testcase == 1 ) { a = 0 ; b = 50 ; c = 50 ; } else if (testcase == 2 ) { a = 1 ; b = 50 ; c = 50 ; } else if (testcase == 3 ) { a = 50 ; b = 50 ; c = 50 ; } else if (testcase == 4 ) { a = 99 ; b = 50 ; c = 50 ; } else if (testcase == 5 ) { a = 100 ; b = 50 ; c = 50 ; } else if (testcase == 6 ) { a = 50 ; b = 0 ; c = 50 ; } else if (testcase == 7 ) { a = 50 ; b = 1 ; c = 50 ; } else if (testcase == 8 ) { a = 50 ; b = 99 ; c = 50 ; } else if (testcase == 9 ) { a = 50 ; b = 100 ; c = 50 ; } else if (testcase == 10 ) { a = 50 ; b = 50 ; c = 0 ; } else if (testcase == 11 ) { a = 50 ; b = 50 ; c = 1 ; } else if (testcase == 12 ) { a = 50 ; b = 50 ; c = 99 ; } else if (testcase == 13 ) { a = 50 ; b = 50 ; c = 100 ; } System.out.print( "\t" + testcase+ "\t" + a+ "\t" + b+ "\t" + c+ "\t" ); nature_of_roots(a, b, c); System.out.println(); testcase++; } } // Driver Code public static void main(String[] args) { checkForAllTestCase(); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to check the nature of the roots # BVA for nature of roots of a quadratic equation def nature_of_roots(a, b, c): # If a = 0, D/2a will yield exception # Hence it is not a valid Quadratic Equation if (a = = 0 ): print ( "Not a Quadratic Equation" ); return ; D = b * b - 4 * a * c; # If D > 0, it will be Real Roots if (D > 0 ): print ( "Real Roots" ); # If D == 0, it will be Equal Roots elif (D = = 0 ): print ( "Equal Roots" ); # If D < 0, it will be Imaginary Roots else : print ( "Imaginary Roots" ); # Function to check for all testcases def checkForAllTestCase(): print ( "Testcase\ta\tb\tc\tActual Output" ); print (); a = b = c = 0 ; testcase = 1 ; while (testcase < = 13 ): if (testcase = = 1 ): a = 0 ; b = 50 ; c = 50 ; elif (testcase = = 2 ): a = 1 ; b = 50 ; c = 50 ; elif (testcase = = 3 ): a = 50 ; b = 50 ; c = 50 ; elif (testcase = = 4 ): a = 99 ; b = 50 ; c = 50 ; elif (testcase = = 5 ): a = 100 ; b = 50 ; c = 50 ; elif (testcase = = 6 ): a = 50 ; b = 0 ; c = 50 ; elif (testcase = = 7 ): a = 50 ; b = 1 ; c = 50 ; elif (testcase = = 8 ): a = 50 ; b = 99 ; c = 50 ; elif (testcase = = 9 ): a = 50 ; b = 100 ; c = 50 ; elif (testcase = = 10 ): a = 50 ; b = 50 ; c = 0 ; elif (testcase = = 11 ): a = 50 ; b = 50 ; c = 1 ; elif (testcase = = 12 ): a = 50 ; b = 50 ; c = 99 ; elif (testcase = = 13 ): a = 50 ; b = 50 ; c = 100 ; print ( "\t" , testcase , "\t" , a , "\t" , b , "\t" , c , "\t" , end = ""); nature_of_roots(a, b, c); print (); testcase + = 1 ; # Driver Code if __name__ = = '__main__' : checkForAllTestCase(); # This code is contributed by 29AjayKumar |
C#
// C# program to check the nature of the roots using System; class GFG { // BVA for nature of roots of a quadratic equation static void nature_of_roots( int a, int b, int c) { // If a = 0, D/2a will yield exception // Hence it is not a valid Quadratic Equation if (a == 0) { Console.Write( "Not a Quadratic Equation" + "\n" ); return ; } int D = b * b - 4 * a * c; // If D > 0, it will be Real Roots if (D > 0) { Console.Write( "Real Roots" + "\n" ); } // If D == 0, it will be Equal Roots else if (D == 0) { Console.Write( "Equal Roots" + "\n" ); } // If D < 0, it will be Imaginary Roots else { Console.Write( "Imaginary Roots" + "\n" ); } } // Function to check for all testcases static void checkForAllTestCase() { Console.Write( "Testcase" + "\ta\tb\tc\tActual Output" + "\n" ); Console.WriteLine(); int a, b, c; a = b = c = 0; int testcase = 1; while (testcase <= 13) { if (testcase == 1) { a = 0; b = 50; c = 50; } else if (testcase == 2) { a = 1; b = 50; c = 50; } else if (testcase == 3) { a = 50; b = 50; c = 50; } else if (testcase == 4) { a = 99; b = 50; c = 50; } else if (testcase == 5) { a = 100; b = 50; c = 50; } else if (testcase == 6) { a = 50; b = 0; c = 50; } else if (testcase == 7) { a = 50; b = 1; c = 50; } else if (testcase == 8) { a = 50; b = 99; c = 50; } else if (testcase == 9) { a = 50; b = 100; c = 50; } else if (testcase == 10) { a = 50; b = 50; c = 0; } else if (testcase == 11) { a = 50; b = 50; c = 1; } else if (testcase == 12) { a = 50; b = 50; c = 99; } else if (testcase == 13) { a = 50; b = 50; c = 100; } Console.Write( "\t" + testcase+ "\t" + a+ "\t" + b+ "\t" + c+ "\t" ); nature_of_roots(a, b, c); Console.WriteLine(); testcase++; } } // Driver Code public static void Main(String[] args) { checkForAllTestCase(); } } // This code is contributed by 29AjayKumar |
Javascript
// JavaScript program to check the nature of the roots // BVA for nature of roots of a quadratic equation function nature_of_roots(a, b, c) { // If a = 0, D/2a will yield exception // Hence it is not a valid Quadratic Equation if (a == 0) { console.log( "Not a Quadratic Equation" ) return ; } let D = b * b - 4 * a * c; // If D > 0, it will be Real Roots if (D > 0) { console.log( "Real Roots" ); } // If D == 0, it will be Equal Roots else if (D == 0) { console.log( "Equal Roots" ); } // If D < 0, it will be Imaginary Roots else { console.log( "Imaginary Roots" ); } } // Function to check for all testcases function checkForAllTestCase() { console.log( "Testcase\ta\tb\tc\tActual Output\n" ); let a, b, c; let testcase = 1; while (testcase <= 13) { if (testcase == 1) { a = 0; b = 50; c = 50; } else if (testcase == 2) { a = 1; b = 50; c = 50; } else if (testcase == 3) { a = 50; b = 50; c = 50; } else if (testcase == 4) { a = 99; b = 50; c = 50; } else if (testcase == 5) { a = 100; b = 50; c = 50; } else if (testcase == 6) { a = 50; b = 0; c = 50; } else if (testcase == 7) { a = 50; b = 1; c = 50; } else if (testcase == 8) { a = 50; b = 99; c = 50; } else if (testcase == 9) { a = 50; b = 100; c = 50; } else if (testcase == 10) { a = 50; b = 50; c = 0; } else if (testcase == 11) { a = 50; b = 50; c = 1; } else if (testcase == 12) { a = 50; b = 50; c = 99; } else if (testcase == 13) { a = 50; b = 50; c = 100; } process.stdout.write( "\ttestcase\t" + a + "\t" + b + "\t" + c + "\t" ); nature_of_roots(a, b, c); testcase++; } } // Driver Code checkForAllTestCase(); // This code is contributed bt phasing17 |
Testcase a b c Actual Output 1 0 50 50 Not a Quadratic Equation 2 1 50 50 Real Roots 3 50 50 50 Imaginary Roots 4 99 50 50 Imaginary Roots 5 100 50 50 Imaginary Roots 6 50 0 50 Imaginary Roots 7 50 1 50 Imaginary Roots 8 50 99 50 Imaginary Roots 9 50 100 50 Equal Roots 10 50 50 0 Real Roots 11 50 50 1 Real Roots 12 50 50 99 Imaginary Roots 13 50 50 100 Imaginary Roots
Time complexity: O(1)
Auxiliary space: O(1)
Please Login to comment...