Open In App

Boolean Parenthesization Problem | DP-37

Given a boolean expression with the following symbols. 

Symbols
    'T' ---> true 
    'F' ---> false 

And following operators filled between symbols 

Operators
    &   ---> boolean AND
    |   ---> boolean OR
    ^   ---> boolean XOR 

Count the number of ways we can parenthesize the expression so that the value of expression evaluates to true. 
Let the input be in form of two arrays one contains the symbols (T and F) in order and the other contains operators (&, | and ^}

Examples: 

Input: symbol[]    = {T, F, T}
       operator[]  = {^, &}
Output: 2
The given expression is "T ^ F & T", it evaluates true
in two ways "((T ^ F) & T)" and "(T ^ (F & T))"

Input: symbol[]    = {T, F, F}
       operator[]  = {^, |}
Output: 2
The given expression is "T ^ F | F", it evaluates true
in two ways "( (T ^ F) | F )" and "( T ^ (F | F) )". 

Input: symbol[]    = {T, T, F, T}
       operator[]  = {|, &, ^}
Output: 4
The given expression is "T | T & F ^ T", it evaluates true
in 4 ways ((T|T)&(F^T)), (T|(T&(F^T))), (((T|T)&F)^T) 
and (T|((T&F)^T)). 
Recommended Practice

Solution: 
Let T(i, j) represent the number of ways to parenthesize the symbols between i and j (both inclusive) such that the subexpression between i and j evaluates to true. 
 


 


Let F(i, j) represent the number of ways to parenthesize the symbols between i and j (inclusive) such that the subexpression between i and j evaluates to false.

 


Base Cases:

T(i, i) = 1 if symbol[i] = 'T' 
T(i, i) = 0 if symbol[i] = 'F' 

F(i, i) = 1 if symbol[i] = 'F' 
F(i, i) = 0 if symbol[i] = 'T'

If we draw the recursion tree of the above recursive solution, we can observe that it has many overlapping subproblems. Like other dynamic programming problems, it can be solved by filling a table in a bottom-up manner. Following is the implementation of a dynamic programming solution. 
 

#include <cstring>
#include <iostream>
using namespace std;
 
// Returns count of all possible
// parenthesizations that lead
// to result true for a boolean
// expression with symbols like
// true and false and operators
// like &, | and ^ filled
// between symbols
int countParenth(char symb[], char oper[], int n)
{
    int F[n][n], T[n][n];
 
    // Fill diagonal entries first
    // All diagonal entries in
    // T[i][i] are 1 if symbol[i]
    // is T (true).  Similarly,
    // all F[i][i] entries are 1 if
    // symbol[i] is F (False)
    for (int i = 0; i < n; i++) {
        F[i][i] = (symb[i] == 'F') ? 1 : 0;
        T[i][i] = (symb[i] == 'T') ? 1 : 0;
    }
 
    // Now fill T[i][i+1],
    // T[i][i+2], T[i][i+3]... in order
    // And F[i][i+1], F[i][i+2],
    // F[i][i+3]... in order
    for (int gap = 1; gap < n; ++gap)
    {
        for (int i = 0, j = gap;
             j < n; ++i, ++j)
        {
            T[i][j] = F[i][j] = 0;
            for (int g = 0;
                 g < gap; g++)
            {
                // Find place of parenthesization using
                // current value of gap
                int k = i + g;
 
                // Store Total[i][k]
                // and Total[k+1][j]
                int tik = T[i][k] + F[i][k];
                int tkj = T[k + 1][j]
                  + F[k + 1][j];
 
                // Follow the recursive formulas
                // according
                // to the current operator
                if (oper[k] == '&') {
                    T[i][j] += T[i][k]
                            * T[k + 1][j];
                    F[i][j] += (tik * tkj
                                - T[i][k]
                                * T[k + 1][j]);
                }
                if (oper[k] == '|') {
                    F[i][j] += F[i][k]
                      * F[k + 1][j];
                    T[i][j] += (tik * tkj
                                - F[i][k]
                                * F[k + 1][j]);
                }
                if (oper[k] == '^') {
                    T[i][j] += F[i][k]
                      * T[k + 1][j]
                      + T[i][k]
                      * F[k + 1][j];
                    F[i][j] += T[i][k]
                            * T[k + 1][j]
                            + F[i][k] * F[k + 1][j];
                }
            }
        }
    }
    return T[0][n - 1];
}
 
// Driver code
int main()
{
    char symbols[] = "TTFT";
    char operators[] = "|&^";
    int n = strlen(symbols);
 
    // There are 4 ways
    // ((T|T)&(F^T)), (T|(T&(F^T))), (((T|T)&F)^T) and
    // (T|((T&F)^T))
    cout << countParenth(symbols, operators, n);
    return 0;
}

                    
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Returns count of all possible
    // parenthesizations that lead to
    // result true for a boolean
    // expression with symbols like true
    // and false and operators like &, |
    // and ^ filled between symbols
    static int countParenth(char symb[], char oper[], int n)
    {
        int F[][] = new int[n][n];
        int T[][] = new int[n][n];
 
        // Fill diagonal entries first
        // All diagonal entries in T[i][i]
        // are 1 if symbol[i] is T (true).
        // Similarly, all F[i][i] entries
        // are 1 if symbol[i] is F (False)
        for (int i = 0; i < n; i++) {
            F[i][i] = (symb[i] == 'F') ? 1 : 0;
            T[i][i] = (symb[i] == 'T') ? 1 : 0;
        }
 
        // Now fill T[i][i+1], T[i][i+2],
        // T[i][i+3]... in order And F[i][i+1],
        // F[i][i+2], F[i][i+3]... in order
        for (int gap = 1; gap < n; ++gap) {
            for (int i = 0, j = gap; j < n; ++i, ++j) {
                T[i][j] = F[i][j] = 0;
                for (int g = 0; g < gap; g++)
 
                {
                    // Find place of parenthesization
                    // using current value of gap
                    int k = i + g;
 
                    // Store Total[i][k]
                    // and Total[k+1][j]
                    int tik = T[i][k] + F[i][k];
                    int tkj = T[k + 1][j] + F[k + 1][j];
 
                    // Follow the recursive formulas
                    // according to the current operator
                    if (oper[k] == '&') {
                        T[i][j] += T[i][k] * T[k + 1][j];
                        F[i][j]
                            += (tik * tkj
                                - T[i][k] * T[k + 1][j]);
                    }
                    if (oper[k] == '|') {
                        F[i][j] += F[i][k] * F[k + 1][j];
                        T[i][j]
                            += (tik * tkj
                                - F[i][k] * F[k + 1][j]);
                    }
                    if (oper[k] == '^') {
                        T[i][j] += F[i][k] * T[k + 1][j]
                                   + T[i][k] * F[k + 1][j];
                        F[i][j] += T[i][k] * T[k + 1][j]
                                   + F[i][k] * F[k + 1][j];
                    }
                }
            }
        }
        return T[0][n - 1];
    }
 
    // Driver code
    public static void main(String[] args)
    {
        char symbols[] = "TTFT".toCharArray();
        char operators[] = "|&^".toCharArray();
        int n = symbols.length;
 
        // There are 4 ways
        // ((T|T)&(F^T)), (T|(T&(F^T))),
        // (((T|T)&F)^T) and (T|((T&F)^T))
        System.out.println(
            countParenth(symbols, operators, n));
    }
}
 
// This code has been contributed
// by 29AjayKumar

                    
# Returns count of all possible
# parenthesizations that lead to
# result true for a boolean
# expression with symbols like
# true and false and operators
# like &, | and ^ filled between symbols
 
 
def countParenth(symb, oper, n):
    F = [[0 for i in range(n + 1)]
         for i in range(n + 1)]
    T = [[0 for i in range(n + 1)]
         for i in range(n + 1)]
 
    # Fill diagonal entries first
    # All diagonal entries in
    # T[i][i] are 1 if symbol[i]
    # is T (true). Similarly, all
    # F[i][i] entries are 1 if
    # symbol[i] is F (False)
    for i in range(n):
        if symb[i] == 'F':
            F[i][i] = 1
        else:
            F[i][i] = 0
 
        if symb[i] == 'T':
            T[i][i] = 1
        else:
            T[i][i] = 0
 
    # Now fill T[i][i+1], T[i][i+2],
    # T[i][i+3]... in order And
    # F[i][i+1], F[i][i+2],
    # F[i][i+3]... in order
    for gap in range(1, n):
        i = 0
        for j in range(gap, n):
            T[i][j] = F[i][j] = 0
            for g in range(gap):
 
                # Find place of parenthesization
                # using current value of gap
                k = i + g
 
                # Store Total[i][k] and Total[k+1][j]
                tik = T[i][k] + F[i][k]
                tkj = T[k + 1][j] + F[k + 1][j]
 
                # Follow the recursive formulas
                # according to the current operator
                if oper[k] == '&':
                    T[i][j] += T[i][k] * T[k + 1][j]
                    F[i][j] += (tik * tkj - T[i][k] *
                                T[k + 1][j])
                if oper[k] == '|':
                    F[i][j] += F[i][k] * F[k + 1][j]
                    T[i][j] += (tik * tkj - F[i][k] *
                                F[k + 1][j])
                if oper[k] == '^':
                    T[i][j] += (F[i][k] * T[k + 1][j] +
                                T[i][k] * F[k + 1][j])
                    F[i][j] += (T[i][k] * T[k + 1][j] +
                                F[i][k] * F[k + 1][j])
            i += 1
    return T[0][n - 1]
 
 
# Driver Code
symbols = "TTFT"
operators = "|&^"
n = len(symbols)
 
# There are 4 ways
# ((T|T)&(F^T)), (T|(T&(F^T))),
# (((T|T)&F)^T) and (T|((T&F)^T))
print(countParenth(symbols, operators, n))
 
# This code is contributed by
# sahil shelangia

                    
// C# program of above approach
using System;
 
class GFG
{
     
    // Returns count of all possible
    // parenthesizations that lead to
    // result true for a boolean
    // expression with symbols like true
    // and false and operators like &, |
    // and ^ filled between symbols
    static int countParenth(char []symb,
                    char []oper, int n)
    {
        int [,]F = new int[n, n];
        int [,]T = new int[n, n];
 
        // Fill diagonal entries first
        // All diagonal entries in T[i,i]
        // are 1 if symbol[i] is T (true).
        // Similarly, all F[i,i] entries
        // are 1 if symbol[i] is F (False)
        for (int i = 0; i < n; i++)
        {
            F[i,i] = (symb[i] == 'F') ? 1 : 0;
            T[i,i] = (symb[i] == 'T') ? 1 : 0;
        }
 
        // Now fill T[i,i+1], T[i,i+2],
        // T[i,i+3]... in order And F[i,i+1],
        // F[i,i+2], F[i,i+3]... in order
        for (int gap = 1; gap < n; ++gap)
        {
            for (int i = 0, j = gap; j < n; ++i, ++j)
            {
                T[i, j] = F[i, j] = 0;
                for (int g = 0; g < gap; g++)
                {
                    // Find place of parenthesization
                    // using current value of gap
                    int k = i + g;
 
                    // Store Total[i,k] and Total[k+1,j]
                    int tik = T[i, k] + F[i, k];
                    int tkj = T[k + 1, j] + F[k + 1, j];
 
                    // Follow the recursive formulas
                    // according to the current operator
                    if (oper[k] == '&')
                    {
                        T[i, j] += T[i, k]
                                * T[k + 1, j];
                        F[i, j] += (tik * tkj
                                - T[i, k] * T[k + 1, j]);
                    }
                    if (oper[k] == '|')
                    {
                        F[i,j] += F[i, k]
                          * F[k + 1, j];
                        T[i,j] += (tik
                               * tkj - F[i, k]
                                   * F[k + 1, j]);
                    }
                    if (oper[k] == '^')
                    {
                        T[i, j] += F[i, k] * T[k + 1, j] +
                                    T[i, k] * F[k + 1, j];
                        F[i, j] += T[i, k] * T[k + 1, j] +
                                    F[i, k] * F[k + 1, j];
                    }
                }
            }
        }
        return T[0,n - 1];
    }
 
    // Driver code
    public static void Main()
    {
        char []symbols = "TTFT".ToCharArray();
        char []operators = "|&^".ToCharArray();
        int n = symbols.Length;
 
        // There are 4 ways
        // ((T|T)&(F^T)), (T|(T&(F^T))),
        // (((T|T)&F)^T) and (T|((T&F)^T))
        Console.WriteLine(countParenth(symbols,
                            operators, n));
    }
}
 
/* This code contributed by PrinciRaj1992 */

                    
<script>
    // Returns count of all possible
    // parenthesizations that lead to
    // result true for a boolean
    // expression with symbols like true
    // and false and operators like &, |
    // and ^ filled between symbols
    function countParenth(symb, oper, n)
    {
        let F = new Array(n);
        let T = new Array(n);
         
        for (let i = 0; i < n; i++)
        {
            F[i] = new Array(n);
            T[i] = new Array(n);
            for(let j = 0; j < n; j++)
            {
                F[i][j] = 0;
                T[i][j] = 0;
            }
        }
  
        // Fill diagonal entries first
        // All diagonal entries in T[i][i]
        // are 1 if symbol[i] is T (true).
        // Similarly, all F[i][i] entries
        // are 1 if symbol[i] is F (False)
        for (let i = 0; i < n; i++) {
            F[i][i] = (symb[i] == 'F') ? 1 : 0;
            T[i][i] = (symb[i] == 'T') ? 1 : 0;
        }
  
        // Now fill T[i][i+1], T[i][i+2],
        // T[i][i+3]... in order And F[i][i+1],
        // F[i][i+2], F[i][i+3]... in order
        for (let gap = 1; gap < n; ++gap)
        {
            for (let i = 0,
                 j = gap; j < n;
                 ++i, ++j)
            {
                T[i][j] = F[i][j] = 0;
                for (let g = 0; g < gap; g++)
                  
                {
                    // Find place of parenthesization
                    // using current value of gap
                    let k = i + g;
  
                    // Store Total[i][k]
                    // and Total[k+1][j]
                    let tik = T[i][k]
                      + F[i][k];
                    let tkj = T[k + 1][j]
                      + F[k + 1][j];
  
                    // Follow the recursive formulas
                    // according to the current operator
                    if (oper[k] == '&')
                    {
                        T[i][j] += T[i][k]
                                * T[k + 1][j];
                        F[i][j]
                            += (tik * tkj
                                - T[i][k]
                                * T[k + 1][j]);
                    }
                    if (oper[k] == '|')
                    {
                        F[i][j] += F[i][k]
                                * F[k + 1][j];
                        T[i][j]
                            += (tik * tkj
                                - F[i][k]
                                * F[k + 1][j]);
                    }
                    if (oper[k] == '^')
                    {
                        T[i][j] += F[i][k]
                               * T[k + 1][j]
                                   + T[i][k]
                                   * F[k + 1][j];
                        F[i][j] += T[i][k]
                               * T[k + 1][j]
                                   + F[i][k]
                               * F[k + 1][j];
                    }
                }
            }
        }
        return T[0][n - 1];
    }
     
    let symbols = "TTFT".split('');
    let operators = "|&^".split('');
    let n = symbols.length;
 
    // There are 4 ways
    // ((T|T)&(F^T)), (T|(T&(F^T))),
    // (((T|T)&F)^T) and (T|((T&F)^T))
    document.write(countParenth(symbols, operators, n));
     
    // This code is contributed by mukesh07.
</script>

                    

Output
4

Time Complexity: O(n3), as we are using nested loops to traverse n3 times. Where n is the length of the symbols string.
Auxiliary Space: O(n2), as we are using extra space for the DP matrix. Where n is the length of the symbols string.

Approach 2: 

We can also use the recursive approach (Top-Down DP), this approach uses memoization.

#include <bits/stdc++.h>
using namespace std;
 
int dp[101][101][2];
int parenthesis_count(string s,
                      int i,
                      int j,
                      int isTrue)
{
    // Base Condition
    if (i > j)
        return false;
    if (i == j) {
        if (isTrue == 1)
            return s[i] == 'T';
        else
            return s[i] == 'F';
    }
 
    if (dp[i][j][isTrue] != -1)
        return dp[i][j][isTrue];
    int ans = 0;
    for (int k = i + 1
         ; k <= j - 1; k = k + 2)
    {
        int leftF, leftT, rightT, rightF;
        if (dp[i][k - 1][1] == -1)
        {
            leftT = parenthesis_count(s, i, k - 1, 1);
        } // Count no. of T in left partition
        else {
            leftT = dp[i][k - 1][1];
        }
 
        if (dp[k + 1][j][1] == -1)
        {
            rightT = parenthesis_count(s, k + 1, j, 1);
        } // Count no. of T in right partition
        else
        {
            rightT = dp[k + 1][j][1];
        }
 
        if (dp[i][k - 1][0] == -1)
        {
            // Count no. of F in left partition
            leftF = parenthesis_count(s, i, k - 1, 0);
        }
        else
        {
            leftF = dp[i][k - 1][0];
        }
 
        if (dp[k + 1][j][0] == -1)
        {
            // Count no. of F in right partition
            rightF = parenthesis_count(s, k + 1, j, 0);
        }
        else
        {
            rightF = dp[k + 1][j][0];
        }
 
        if (s[k] == '&')
        {
            if (isTrue == 1)
                ans += leftT * rightT;
            else
                ans += leftF * rightF + leftT * rightF
                       + leftF * rightT;
        }
        else if (s[k] == '|')
        {
            if (isTrue == 1)
                ans += leftT * rightT + leftT * rightF
                       + leftF * rightT;
            else
                ans = ans + leftF * rightF;
        }
        else if (s[k] == '^')
        {
            if (isTrue == 1)
                ans = ans + leftF * rightT + leftT * rightF;
            else
                ans = ans + leftT * rightT + leftF * rightF;
        }
        dp[i][j][isTrue] = ans;
    }
    return ans;
}
 
// Driver Code
int main()
{
    string symbols = "TTFT";
    string operators = "|&^";
    string s;
    int j = 0;
 
    for (int i = 0; i < symbols.length(); i++)
    {
        s.push_back(symbols[i]);
        if (j < operators.length())
            s.push_back(operators[j++]);
    }
     
    // We obtain the string  T|T&F^T
    int n = s.length();
     
    // There are 4 ways
    // ((T|T)&(F^T)), (T|(T&(F^T))), (((T|T)&F)^T) and
    // (T|((T&F)^T))
    memset(dp, -1, sizeof(dp));
    cout << parenthesis_count(s, 0, n - 1, 1);
    return 0;
}

                    
import java.io.*;
import java.util.*;
 
class GFG {
    public static int countWays(int N, String S)
    {
        int dp[][][] = new int[N + 1][N + 1][2];
 
        for (int row[][] : dp)
            for (int col[] : row)
                Arrays.fill(col, -1);
        return parenthesis_count(S, 0, N - 1, 1, dp);
    }
 
    public static int parenthesis_count(String str, int i,
                                        int j, int isTrue,
                                        int[][][] dp)
    {
        if (i > j)
            return 0;
 
        if (i == j)
        {
            if (isTrue == 1)
            {
                return (str.charAt(i) == 'T') ? 1 : 0;
            }
            else
            {
                return (str.charAt(i) == 'F') ? 1 : 0;
            }
        }
 
        if (dp[i][j][isTrue] != -1)
            return dp[i][j][isTrue];
 
        int temp_ans = 0;
 
        int leftTrue, rightTrue, leftFalse, rightFalse;
 
        for (int k = i + 1; k <= j - 1; k = k + 2)
        {
 
            if (dp[i][k - 1][1] != -1)
                leftTrue = dp[i][k - 1][1];
            else
            {
                // Count number of True in left Partition
                leftTrue = parenthesis_count(str, i, k - 1,
                                             1, dp);
            }
            if (dp[i][k - 1][0] != -1)
                leftFalse = dp[i][k - 1][0];
            else
            {
               
                // Count number of False in left Partition
                leftFalse = parenthesis_count(str, i, k - 1,
                                              0, dp);
            }
            if (dp[k + 1][j][1] != -1)
                rightTrue = dp[k + 1][j][1];
            else
            {
               
                // Count number of True in right Partition
                rightTrue = parenthesis_count(str, k + 1, j,
                                              1, dp);
            }
            if (dp[k + 1][j][0] != -1)
                rightFalse = dp[k + 1][j][0];
            else
            {
               
                // Count number of False in right Partition
                rightFalse = parenthesis_count(str, k + 1,
                                               j, 0, dp);
            }
 
            // Evaluate AND operation
            if (str.charAt(k) == '&')
            {
                if (isTrue == 1)
                {
                    temp_ans
                        = temp_ans + leftTrue * rightTrue;
                }
                else
                {
                    temp_ans = temp_ans
                               + leftTrue * rightFalse
                               + leftFalse * rightTrue
                               + leftFalse * rightFalse;
                }
            }
            // Evaluate OR operation
            else if (str.charAt(k) == '|')
            {
                if (isTrue == 1)
                {
                    temp_ans = temp_ans
                               + leftTrue * rightTrue
                               + leftTrue * rightFalse
                               + leftFalse * rightTrue;
                }
                else
                {
                    temp_ans
                        = temp_ans + leftFalse * rightFalse;
                }
            }
           
            // Evaluate XOR operation
            else if (str.charAt(k) == '^')
            {
                if (isTrue == 1)
                {
                    temp_ans = temp_ans
                               + leftTrue * rightFalse
                               + leftFalse * rightTrue;
                }
                else
                {
                    temp_ans = temp_ans
                               + leftTrue * rightTrue
                               + leftFalse * rightFalse;
                }
            }
            dp[i][j][isTrue] = temp_ans;
        }
        return temp_ans;
    }
   
  // Driver code
    public static void main(String[] args)
    {
        String symbols = "TTFT";
        String operators = "|&^";
        StringBuilder S = new StringBuilder();
        int j = 0;
 
        for (int i = 0; i < symbols.length(); i++)
        {
            S.append(symbols.charAt(i));
            if (j < operators.length())
                S.append(operators.charAt(j++));
        }
 
        // We obtain the string  T|T&F^T
        int N = S.length();
 
        // There are 4 ways
        // ((T|T)&(F^T)), (T|(T&(F^T))), (((T|T)&F)^T) and
        // (T|((T&F)^T))
        System.out.println(countWays(N, S.toString()));
    }
}
 
// This code is contributed by farheenbano.

                    
def parenthesis_count(Str, i, j, isTrue, dp) :
     
    if (i > j) :
      return 0
     
    if (i == j) :
     
      if (isTrue == 1) :
       
        return 1 if Str[i] == 'T' else 0
       
      else :
       
        return 1 if Str[i] == 'F' else 0
     
    if (dp[i][j][isTrue] != -1) :
      return dp[i][j][isTrue]
     
    temp_ans = 0
     
    for k in range(i + 1, j, 2) :
     
      if (dp[i][k - 1][1] != -1) :
        leftTrue = dp[i][k - 1][1]
      else :
        # Count number of True in left Partition
        leftTrue = parenthesis_count(Str, i, k - 1, 1, dp)
         
      if (dp[i][k - 1][0] != -1) :
        leftFalse = dp[i][k - 1][0]
      else :
        # Count number of False in left Partition
        leftFalse = parenthesis_count(Str, i, k - 1, 0, dp)
      
      if (dp[k + 1][j][1] != -1) :
        rightTrue = dp[k + 1][j][1]
      else :
        # Count number of True in right Partition
        rightTrue = parenthesis_count(Str, k + 1, j, 1, dp)
       
      if (dp[k + 1][j][0] != -1) :
        rightFalse = dp[k + 1][j][0]
      else :
        # Count number of False in right Partition
        rightFalse = parenthesis_count(Str, k + 1, j, 0, dp)
     
      # Evaluate AND operation
      if (Str[k] == '&') :
        if (isTrue == 1) :
          temp_ans = temp_ans + leftTrue * rightTrue
        else :
          temp_ans = temp_ans + leftTrue * rightFalse + leftFalse * rightTrue + leftFalse * rightFalse
      # Evaluate OR operation
      elif (Str[k] == '|') :
        if (isTrue == 1) :
          temp_ans = temp_ans + leftTrue * rightTrue + leftTrue * rightFalse + leftFalse * rightTrue
        else :
          temp_ans = temp_ans + leftFalse * rightFalse
     
      # Evaluate XOR operation
      elif (Str[k] == '^') :
        if (isTrue == 1) :
          temp_ans = temp_ans + leftTrue * rightFalse + leftFalse * rightTrue
        else :
          temp_ans = temp_ans + leftTrue * rightTrue + leftFalse * rightFalse
      dp[i][j][isTrue] = temp_ans
 
    return temp_ans
     
def countWays(N, S) :
  
    dp = [[[-1 for k in range(2)] for i in range(N + 1)] for j in range(N + 1)]
    return parenthesis_count(S, 0, N - 1, 1, dp)
  
symbols = "TTFT"
operators = "|&^"
S = ""
j = 0
for i in range(len(symbols)) :
 
  S = S + symbols[i]
  if (j < len(operators)) :
    S = S + operators[j]
    j += 1
 
# We obtain the string  T|T&F^T
N = len(S)
 
# There are 4 ways
# ((T|T)&(F^T)), (T|(T&(F^T))), (((T|T)&F)^T) and
# (T|((T&F)^T))
print(countWays(N, S))
 
# This code is contributed by divyesh072019

                    
using System;
class GFG
{
 
  static int parenthesis_count(string str, int i,
                               int j, int isTrue,
                               int[,,] dp)
  {
    if (i > j)
      return 0;
 
    if (i == j)
    {
      if (isTrue == 1)
      {
        return (str[i] == 'T') ? 1 : 0;
      }
      else
      {
        return (str[i] == 'F') ? 1 : 0;
      }
    }
 
    if (dp[i, j, isTrue] != -1)
      return dp[i, j, isTrue];
 
    int temp_ans = 0;
 
    int leftTrue, rightTrue, leftFalse, rightFalse;
 
    for (int k = i + 1; k <= j - 1; k = k + 2)
    {
 
      if (dp[i, k - 1, 1] != -1)
        leftTrue = dp[i, k - 1, 1];
      else
      {
        // Count number of True in left Partition
        leftTrue = parenthesis_count(str, i, k - 1, 1, dp);
      }
      if (dp[i, k - 1, 0] != -1)
        leftFalse = dp[i, k - 1, 0];
      else
      {
 
        // Count number of False in left Partition
        leftFalse = parenthesis_count(str, i, k - 1, 0, dp);
      }
      if (dp[k + 1, j, 1] != -1)
        rightTrue = dp[k + 1, j, 1];
      else
      {
 
        // Count number of True in right Partition
        rightTrue = parenthesis_count(str, k + 1, j,
                                      1, dp);
      }
      if (dp[k + 1, j, 0] != -1)
        rightFalse = dp[k + 1, j, 0];
      else
      {
 
        // Count number of False in right Partition
        rightFalse = parenthesis_count(str, k + 1,
                                       j, 0, dp);
      }
 
      // Evaluate AND operation
      if (str[k] == '&')
      {
        if (isTrue == 1)
        {
          temp_ans
            = temp_ans + leftTrue * rightTrue;
        }
        else
        {
          temp_ans = temp_ans
            + leftTrue * rightFalse
            + leftFalse * rightTrue
            + leftFalse * rightFalse;
        }
      }
      // Evaluate OR operation
      else if (str[k] == '|')
      {
        if (isTrue == 1)
        {
          temp_ans = temp_ans
            + leftTrue * rightTrue
            + leftTrue * rightFalse
            + leftFalse * rightTrue;
        }
        else
        {
          temp_ans
            = temp_ans + leftFalse * rightFalse;
        }
      }
 
      // Evaluate XOR operation
      else if (str[k] == '^')
      {
        if (isTrue == 1)
        {
          temp_ans = temp_ans
            + leftTrue * rightFalse
            + leftFalse * rightTrue;
        }
        else
        {
          temp_ans = temp_ans
            + leftTrue * rightTrue
            + leftFalse * rightFalse;
        }
      }
      dp[i, j, isTrue] = temp_ans;
    }
    return temp_ans;
  }
 
  static int countWays(int N, string S)
  {
    int[,,] dp = new int[N + 1, N + 1, 2];
    for(int i = 0; i < (N + 1); i++)
    {
      for(int j = 0; j < (N + 1); j++)
      {
        for(int k = 0; k < 2; k++)
        {
          dp[i, j, k] = -1;
        }
      }
    }
    return parenthesis_count(S, 0, N - 1, 1, dp);
  }
 
  // Driver code
  static void Main()
  {
    string symbols = "TTFT";
    string operators = "|&^";
    string S = "";
    int j = 0;
    for (int i = 0; i < symbols.Length; i++)
    {
      S = S + symbols[i];
      if (j < operators.Length)
        S = S + operators[j++];
    }
 
    // We obtain the string  T|T&F^T
    int N = S.Length;
 
    // There are 4 ways
    // ((T|T)&(F^T)), (T|(T&(F^T))), (((T|T)&F)^T) and
    // (T|((T&F)^T))
    Console.WriteLine(countWays(N, S));
  }
}
 
// This code is contributed by divyeshrabadiya07.

                    
<script>
 
function countWays(N, S)
{
    let dp = new Array(N + 1);
    for(let i = 0; i < N + 1; i++)
    {
        dp[i] = new Array(N+1);
        for(let j = 0; j < N + 1;j++)
        {
            dp[i][j] = new Array(2);
            for(let k = 0; k < 2; k++)
                dp[i][j][k] = -1;
        }
    }
  
         
        return parenthesis_count(S, 0, N - 1, 1, dp);
}
 
function parenthesis_count(str, i, j, isTrue, dp)
{
    if (i > j)
            return 0;
  
        if (i == j)
        {
            if (isTrue == 1)
            {
                return (str[i] == 'T') ? 1 : 0;
            }
            else
            {
                return (str[i] == 'F') ? 1 : 0;
            }
        }
  
        if (dp[i][j][isTrue] != -1)
            return dp[i][j][isTrue];
  
        let temp_ans = 0;
  
        let leftTrue, rightTrue, leftFalse, rightFalse;
  
        for (let k = i + 1; k <= j - 1; k = k + 2)
        {
  
            if (dp[i][k - 1][1] != -1)
                leftTrue = dp[i][k - 1][1];
            else
            {
                // Count number of True in left Partition
                leftTrue = parenthesis_count(str, i, k - 1,
                                             1, dp);
            }
            if (dp[i][k - 1][0] != -1)
                leftFalse = dp[i][k - 1][0];
            else
            {
                
                // Count number of False in left Partition
                leftFalse = parenthesis_count(str, i, k - 1,
                                              0, dp);
            }
            if (dp[k + 1][j][1] != -1)
                rightTrue = dp[k + 1][j][1];
            else
            {
                
                // Count number of True in right Partition
                rightTrue = parenthesis_count(str, k + 1, j,
                                              1, dp);
            }
            if (dp[k + 1][j][0] != -1)
                rightFalse = dp[k + 1][j][0];
            else
            {
                
                // Count number of False in right Partition
                rightFalse = parenthesis_count(str, k + 1,
                                               j, 0, dp);
            }
  
            // Evaluate AND operation
            if (str[k] == '&')
            {
                if (isTrue == 1)
                {
                    temp_ans
                        = temp_ans + leftTrue * rightTrue;
                }
                else
                {
                    temp_ans = temp_ans
                               + leftTrue * rightFalse
                               + leftFalse * rightTrue
                               + leftFalse * rightFalse;
                }
            }
            // Evaluate OR operation
            else if (str[k] == '|')
            {
                if (isTrue == 1)
                {
                    temp_ans = temp_ans
                               + leftTrue * rightTrue
                               + leftTrue * rightFalse
                               + leftFalse * rightTrue;
                }
                else
                {
                    temp_ans
                        = temp_ans + leftFalse * rightFalse;
                }
            }
            
            // Evaluate XOR operation
            else if (str[k] == '^')
            {
                if (isTrue == 1)
                {
                    temp_ans = temp_ans
                               + leftTrue * rightFalse
                               + leftFalse * rightTrue;
                }
                else
                {
                    temp_ans = temp_ans
                               + leftTrue * rightTrue
                               + leftFalse * rightFalse;
                }
            }
            dp[i][j][isTrue] = temp_ans;
        }
        return temp_ans;
}
 
 // Driver code
let symbols = "TTFT";
let operators = "|&^";
let S = [];
let j = 0;
 
for (let i = 0; i < symbols.length; i++)
{
    S.push(symbols[i]);
    if (j < operators.length)
        S.push(operators[j++]);
}
 
// We obtain the string  T|T&F^T
let N = S.length;
 
// There are 4 ways
// ((T|T)&(F^T)), (T|(T&(F^T))), (((T|T)&F)^T) and
// (T|((T&F)^T))
document.write(countWays(N, S.join("")));
 
// This code is contributed by avanitrachhadiya2155
</script>

                    

Output
4

Time Complexity: O(n3), as we are using a loop to traverse, n times and we are making recursive calls which will cost n2 times. Where n is the length of the symbols string.
Auxiliary Space: O(n2), as we are using extra space for the DP matrix. Where n is the length of the symbols string.

References: 
http://people.cs.clemson.edu/~bcdean/dp_practice/dp_9.swf

 


Article Tags :