Binary Tree Iterator for Inorder Traversal
Given a Binary Tree and an input array. The task is to create an Iterator that utilizes next() and hasNext() functions to perform Inorder traversal on the binary tree.
Examples:
Input: 8 Input Array = [next(), hasNext(), next(), next(), next(), hasNext(), next(), next(), hasNext()]
/ \
3 9
/ \
2 4
\
5Output: [2, true, 3, 4, 5, true, 8, 9, false]
Explanation: According to in order traversal answer to the input array is calculated.
Inorder traversal = {2, 3, 4, 5, 8, 9}Input: 4 Input Array = [hasNext(), next(), next(), hasNext()]
/ \
3 2
\
1Output: [true, 3, 4 true]
Naive Approach: A way is needed to traverse back to the ancestor once we reach the leaf node of the binary tree. A Stack data structure can be used for this.
Algorithm:
Class is Instantiated
- initialize the stack
- set current node = root
- while current != NULL
- add current to stack
- current = current.left
hasNext() function
IF the stack is not empty
return true
ELSE
return false
next() function
- IF stack is empty (or hasNext() returns false)
- Throw an exception
- ELSE
- Initialize current = stack.top
- Pop the element from the stack
- If current.right != NULL
- Initialize next = current->right
- while next != NULL
- add next to the stack
- next = next.left
- return current
Below is the implementation of above approach
C++
// CPP Program for above approach #include <iostream> #include <stack> using namespace std; // Structure of a Node struct Node { int data; Node* left; Node* right; }; // Utility function to create a new Node Node* newNode( int data) { Node* node = new Node; node->data = data; node->left = node->right = NULL; return node; } // Inorder Iterator class class InorderIterator { private : stack<Node*> traversal; public : InorderIterator(Node* root) { moveLeft(root); } void moveLeft(Node* current) { while (current) { traversal.push(current); current = current->left; } } bool hasNext() { return !traversal.empty(); } Node* next() { if (!hasNext()) throw "No such element Exists" ; Node* current = traversal.top(); traversal.pop(); if (current->right) moveLeft(current->right); return current; } }; // Driver Code int main() { Node* root = newNode(8); root->right = newNode(9); root->left = newNode(3); root->left->left = newNode(2); root->left->right = newNode(4); root->left->right->right = newNode(5); InorderIterator itr(root); try { cout << itr.next()->data << " " ; cout << itr.hasNext() << " " ; cout << itr.next()->data << " " ; cout << itr.next()->data << " " ; cout << itr.next()->data << " " ; cout << itr.hasNext() << " " ; cout << itr.next()->data << " " ; cout << itr.next()->data << " " ; cout << itr.hasNext() << " " ; } catch ( const char * msg) { cout << msg; } return 0; } // This code is contributed by adityamaharshi21 |
Java
// Java Program for above approach import java.util.*; // Structure of a Node class Node { int data; Node left; Node right; Node( int data) { this .data = data; left = right = null ; } } // Inorder Iterator class class InorderIterator { private Stack<Node> traversal; InorderIterator(Node root) { traversal = new Stack<Node>(); moveLeft(root); } private void moveLeft(Node current) { while (current != null ) { traversal.push(current); current = current.left; } } public boolean hasNext() { return !traversal.isEmpty(); } public Node next() { if (!hasNext()) throw new NoSuchElementException(); Node current = traversal.pop(); if (current.right != null ) moveLeft(current.right); return current; } } // Class to Test given set of inputs class Test { // Driver Code public static void main(String args[]) { Node root = new Node( 8 ); root.right = new Node( 9 ); root.left = new Node( 3 ); root.left.left = new Node( 2 ); root.left.right = new Node( 4 ); root.left.right.right = new Node( 5 ); InorderIterator itr = new InorderIterator(root); try { System.out.print(itr.next().data + " " ); System.out.print(itr.hasNext() + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.hasNext() + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.hasNext() + " " ); } catch (NoSuchElementException e) { System.out.print( "No such element Exists" ); } } } |
Python
# Python Program for above approach class Node: def __init__( self , data): self .data = data self .left = None self .right = None # Inorder Iterator class class InorderIterator: def __init__( self , root): self .traversal = [] self .moveLeft(root) def moveLeft( self , current): while current ! = None : self .traversal.append(current) current = current.left def hasNext( self ): return len ( self .traversal) > 0 def next ( self ): if not self .hasNext(): raise Exception( 'No such element Exists' ) current = self .traversal.pop() if current.right ! = None : self .moveLeft(current.right) return current # Class to Test given set of inputs # Driver Code root = Node( 8 ) root.right = Node( 9 ) root.left = Node( 3 ) root.left.left = Node( 2 ) root.left.right = Node( 4 ) root.left.right.right = Node( 5 ) itr = InorderIterator(root) try : print (itr. next ().data) print (itr.hasNext()) print (itr. next ().data) print (itr. next ().data) print (itr. next ().data) print (itr.hasNext()) print (itr. next ().data) print (itr. next ().data) print (itr.hasNext()) except Exception as e: print ( "No such element Exists" ) # This code is contributed by adityamaharshi21 |
C#
// C# code for the above approach using System; using System.Collections.Generic; // Structure of a Node class Node { public int Data { get ; set ; } public Node Left { get ; set ; } public Node Right { get ; set ; } public Node( int data) { Data = data; Left = Right = null ; } } // Inorder Iterator class class InorderIterator { private Stack<Node> traversal; public InorderIterator(Node root) { traversal = new Stack<Node>(); MoveLeft(root); } private void MoveLeft(Node current) { while (current != null ) { traversal.Push(current); current = current.Left; } } public bool HasNext() { return traversal.Count > 0; } public Node Next() { if (!HasNext()) throw new InvalidOperationException( "No more elements in the inorder traversal." ); Node current = traversal.Pop(); if (current.Right != null ) MoveLeft(current.Right); return current; } } // Class to Test given set of inputs class GFG { // Driver Code static void Main( string [] args) { Node root = new Node(8); root.Right = new Node(9); root.Left = new Node(3); root.Left.Left = new Node(2); root.Left.Right = new Node(4); root.Left.Right.Right = new Node(5); InorderIterator itr = new InorderIterator(root); try { Console.Write(itr.Next().Data + " " ); Console.Write(itr.HasNext() + " " ); Console.Write(itr.Next().Data + " " ); Console.Write(itr.Next().Data + " " ); Console.Write(itr.Next().Data + " " ); Console.Write(itr.HasNext() + " " ); Console.Write(itr.Next().Data + " " ); Console.Write(itr.Next().Data + " " ); Console.Write(itr.HasNext() + " " ); } catch (InvalidOperationException e) { Console.Write( "No such element Exists" ); } } } // This code is contributed by Potta Lokesh |
Javascript
// Javascript Program for above approach class Node { constructor(data) { this .data = data; this .left = null ; this .right = null ; } } // Inorder Iterator class class InorderIterator { constructor(root) { this .traversal = []; this .moveLeft(root); } moveLeft(current) { while (current != null ) { this .traversal.push(current); current = current.left; } } hasNext() { return this .traversal.length > 0; } next() { if (! this .hasNext()) throw new Error( 'No such element Exists' ); let current = this .traversal.pop(); if (current.right != null ) this .moveLeft(current.right); return current; } } // Class to Test given set of inputs // Driver Code let root = new Node(8); root.right = new Node(9); root.left = new Node(3); root.left.left = new Node(2); root.left.right = new Node(4); root.left.right.right = new Node(5); let itr = new InorderIterator(root); try { console.log(itr.next().data + " " ); console.log(itr.hasNext() + " " ); console.log(itr.next().data + " " ); console.log(itr.next().data + " " ); console.log(itr.next().data + " " ); console.log(itr.hasNext() + " " ); console.log(itr.next().data + " " ); console.log(itr.next().data + " " ); console.log(itr.hasNext() + " " ); } catch (e) { console.log( "No such element Exists" ); } // This code is contributed by adityamaharshi21 |
2 true 3 4 5 true 8 9 false
Time Complexity: O(N), Where N is the number of nodes in the binary tree.
Auxiliary Space: O(N), The Stack will hold all N elements in the worst case.
Efficient Approach: Morris Traversal can be used to solve this question using constant space. The idea behind morris traversal is to create a temporary link between a node and the right-most node in its left sub-tree so that the ancestor node can be backtracked. A reference of the ancestor node is set to the right child of the right-most node in its left sub-tree.
Algorithm:
Class is Instantiated
Initialize current = root and rightMost = NULL
hasNext() function
IF current != NULL
return true
ELSE
return false
next() function
- IF current = NULL ( or hasNext() returns false)
- Throw an exception
- ELSE
- IF current.left = NULL
- Initialize temp = current
- current = current.right
- return temp
- ELSE
- Initialize rightMost = current->left
- while rightMost.right != NULL && rightMost.right != current
- rightMost = rightMost.right
- IF rightMost.right == NULL
- rightMost.right = current
- current = current.left
- ELSE
- temp = current
- rightMost.right = null
- current = current.right
- return current
- Call the function again
Below is the implementation of above approach.
C++
#include <iostream> #include <stack> struct Node { int data; Node *left, *right; Node( int data) { this ->data = data; this ->left = this ->right = NULL; } }; class InorderIterator { private : Node *current, *rightMost; public : InorderIterator(Node *root) { current = root; rightMost = NULL; } bool hasNext() { return current != NULL; } Node* next() { if (!hasNext()) { std::cout << "No such element exists" << std::endl; return NULL; } if (current->left == NULL) { Node *temp = current; current = current->right; return temp; } rightMost = current->left; while (rightMost->right != NULL && rightMost->right != current) { rightMost = rightMost->right; } if (rightMost->right == NULL) { rightMost->right = current; current = current->left; } else { rightMost->right = NULL; Node *temp = current; current = current->right; return temp; } return next(); } }; int main() { Node *root = new Node(8); root->right = new Node(9); root->left = new Node(3); root->left->left = new Node(2); root->left->right = new Node(4); root->left->right->right = new Node(5); InorderIterator itr(root); std::cout << itr.next()->data << " " ; std::cout << itr.hasNext() << " " ; std::cout << itr.next()->data << " " ; std::cout << itr.next()->data << " " ; std::cout << itr.next()->data << " " ; std::cout << itr.hasNext() << " " ; std::cout << itr.next()->data << " " ; std::cout << itr.next()->data << " " ; std::cout << itr.hasNext() << " " ; return 0; } // This code is contributed by anskalyan3. |
Java
// Java Program for above approach import java.util.*; // Structure of a Node class Node { int data; Node left; Node right; Node( int data) { this .data = data; left = right = null ; } } // Inorder Iterator class class InorderIterator { private Node current, rightMost; InorderIterator(Node root) { current = root; rightMost = null ; } public boolean hasNext() { return current != null ; } public Node next() { if (!hasNext()) throw new NoSuchElementException(); if (current.left == null ) { Node temp = current; current = current.right; return temp; } rightMost = current.left; while (rightMost.right != null && rightMost.right != current) rightMost = rightMost.right; if (rightMost.right == null ) { rightMost.right = current; current = current.left; } else { rightMost.right = null ; Node temp = current; current = current.right; return temp; } return next(); } } class Test { // Driver Code public static void main(String args[]) { Node root = new Node( 8 ); root.right = new Node( 9 ); root.left = new Node( 3 ); root.left.left = new Node( 2 ); root.left.right = new Node( 4 ); root.left.right.right = new Node( 5 ); InorderIterator itr = new InorderIterator(root); try { System.out.print(itr.next().data + " " ); System.out.print(itr.hasNext() + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.hasNext() + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.next().data + " " ); System.out.print(itr.hasNext() + " " ); } catch (NoSuchElementException e) { System.out.print( "No such element Exists" ); } } } |
Python
class Node: def __init__( self , data): self .data = data self .left = self .right = None class InorderIterator: def __init__( self , root): self .current = root self .right_most = None def has_next( self ): return self .current is not None def next ( self ): if not self .has_next(): print ( "No such element exists" ) return None if self .current.left is None : temp = self .current self .current = self .current.right return temp self .right_most = self .current.left while self .right_most.right is not None and self .right_most.right ! = self .current: self .right_most = self .right_most.right if self .right_most.right is None : self .right_most.right = self .current self .current = self .current.left else : self .right_most.right = None temp = self .current self .current = self .current.right return temp return self . next () root = Node( 8 ) root.right = Node( 9 ) root.left = Node( 3 ) root.left.left = Node( 2 ) root.left.right = Node( 4 ) root.left.right.right = Node( 5 ) itr = InorderIterator(root) print (itr. next ().data) print (itr.has_next()) print (itr. next ().data) print (itr. next ().data) print (itr. next ().data) print (itr.has_next()) print (itr. next ().data) print (itr. next ().data) print (itr.has_next()) |
Javascript
// JavaScript program for above approach class Node { constructor(data) { this .data = data; this .left = null ; this .right = null ; } } class InorderIterator { constructor(root) { this .current = root; this .rightMost = null ; } hasNext() { return this .current != null ; } next() { if (! this .hasNext()) throw new Error( "No such element Exists" ); if ( this .current.left == null ) { let temp = this .current; this .current = this .current.right; return temp; } this .rightMost = this .current.left; while ( this .rightMost.right != null && this .rightMost.right != this .current) this .rightMost = this .rightMost.right; if ( this .rightMost.right == null ) { this .rightMost.right = this .current; this .current = this .current.left; } else { this .rightMost.right = null ; let temp = this .current; this .current = this .current.right; return temp; } return this .next(); } } let root = new Node(8); root.right = new Node(9); root.left = new Node(3); root.left.left = new Node(2); root.left.right = new Node(4); root.left.right.right = new Node(5); let itr = new InorderIterator(root); try { console.log(itr.next().data + " " ); console.log(itr.hasNext() + " " ); console.log(itr.next().data + " " ); console.log(itr.next().data + " " ); console.log(itr.next().data + " " ); console.log(itr.hasNext() + " " ); console.log(itr.next().data + " " ); console.log(itr.next().data + " " ); console.log(itr.hasNext() + " " ); } catch (e) { console.log( "No such element Exists" ); } // This code is contributed by adityamaharshi21 |
C#
// C# Program for above approach using System; using System.Collections.Generic; // Structure of a Node public class Node { public int data; public Node left, right; public Node( int data) { this .data = data; left = right = null ; } } // Inorder Iterator class public class InorderIterator { private Node current, rightMost; public InorderIterator(Node root) { current = root; rightMost = null ; } public bool HasNext() { return current != null ; } public Node Next() { if (!HasNext()) throw new Exception( "No such element exists" ); if (current.left == null ) { Node temp = current; current = current.right; return temp; } rightMost = current.left; while (rightMost.right != null && rightMost.right != current) rightMost = rightMost.right; if (rightMost.right == null ) { rightMost.right = current; current = current.left; } else { rightMost.right = null ; Node temp = current; current = current.right; return temp; } return Next(); } } public class GFG { static public void Main() { // Code Node root = new Node(8); root.right = new Node(9); root.left = new Node(3); root.left.left = new Node(2); root.left.right = new Node(4); root.left.right.right = new Node(5); InorderIterator itr = new InorderIterator(root); try { Console.Write(itr.Next().data + " " ); Console.Write(itr.HasNext() + " " ); Console.Write(itr.Next().data + " " ); Console.Write(itr.Next().data + " " ); Console.Write(itr.Next().data + " " ); Console.Write(itr.HasNext() + " " ); Console.Write(itr.Next().data + " " ); Console.Write(itr.Next().data + " " ); Console.Write(itr.HasNext() + " " ); } catch (Exception e) { Console.Write( "No such element Exists" ); } } } // This code is contributed by karthik |
2 true 3 4 5 true 8 9 false
Time Complexity: O(N), where N is the number of nodes in the binary tree. Although we are creating temporary links are created and nodes are traversed multiple times (at most 3 times), the time complexity is still linear.
Auxiliary Space: O(1)
Please Login to comment...