Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Binary Tree Iterator for Inorder Traversal

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a Binary Tree and an input array. The task is to create an Iterator that utilizes next() and hasNext() functions to perform Inorder traversal on the binary tree.

Examples:

Input:        8                          Input Array =  [next(), hasNext(), next(), next(), next(), hasNext(), next(), next(), hasNext()]
                /   \                
              3     9
           /   \                        
        2     4                                       
                 \ 
                  5     

Output: [2, true, 3, 4, 5, true, 8, 9, false]         
Explanation: According to in order traversal answer to the input array is calculated. 
Inorder traversal = {2, 3, 4, 5, 8, 9}

Input:     4                           Input Array = [hasNext(), next(), next(), hasNext()]
            /    \
          3      2
                    \
                     1 

Output: [true, 3, 4 true]           

 

Naive Approach: A way is needed to traverse back to the ancestor once we reach the leaf node of the binary tree. A Stack data structure can be used for this. 

Algorithm: 

Class is Instantiated

  1. initialize the stack
  2. set current node = root
  3. while current != NULL
    1. add current to stack
    2. current = current.left

hasNext() function

IF the stack is not empty

    return true

ELSE

    return false

next() function

  • IF stack is empty (or hasNext() returns false)
    • Throw an exception
  • ELSE
    • Initialize current = stack.top
    • Pop the element from the stack
    • If current.right != NULL
      • Initialize next = current->right
      • while next != NULL
        • add next to the stack
        • next = next.left
    • return current

Below is the implementation of above approach

C++




// CPP Program for above approach
#include <iostream>
#include <stack>
using namespace std;
 
// Structure of a Node
struct Node {
    int data;
    Node* left;
    Node* right;
};
 
// Utility function to create a new Node
Node* newNode(int data)
{
    Node* node = new Node;
    node->data = data;
    node->left = node->right = NULL;
    return node;
}
 
// Inorder Iterator class
class InorderIterator {
private:
    stack<Node*> traversal;
 
public:
    InorderIterator(Node* root)
    {
        moveLeft(root);
    }
 
    void moveLeft(Node* current)
    {
        while (current) {
            traversal.push(current);
            current = current->left;
        }
    }
 
    bool hasNext()
    {
        return !traversal.empty();
    }
 
    Node* next()
    {
        if (!hasNext())
            throw "No such element Exists";
 
        Node* current = traversal.top();
        traversal.pop();
 
        if (current->right)
            moveLeft(current->right);
 
        return current;
    }
};
 
// Driver Code
int main()
{
    Node* root = newNode(8);
    root->right = newNode(9);
    root->left = newNode(3);
    root->left->left = newNode(2);
    root->left->right = newNode(4);
    root->left->right->right = newNode(5);
 
    InorderIterator itr(root);
    try {
        cout << itr.next()->data << " ";
        cout << itr.hasNext() << " ";
        cout << itr.next()->data << " ";
        cout << itr.next()->data << " ";
        cout << itr.next()->data << " ";
        cout << itr.hasNext() << " ";
        cout << itr.next()->data << " ";
        cout << itr.next()->data << " ";
        cout << itr.hasNext() << " ";
    }
    catch (const char* msg) {
        cout << msg;
    }
    return 0;
}
 
// This code is contributed by adityamaharshi21

Java




// Java Program for above approach
import java.util.*;
 
// Structure of a Node
class Node {
    int data;
    Node left;
    Node right;
 
    Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
 
// Inorder Iterator class
class InorderIterator {
    private Stack<Node> traversal;
 
    InorderIterator(Node root)
    {
        traversal = new Stack<Node>();
        moveLeft(root);
    }
 
    private void moveLeft(Node current)
    {
        while (current != null) {
            traversal.push(current);
            current = current.left;
        }
    }
 
    public boolean hasNext()
    {
        return !traversal.isEmpty();
    }
 
    public Node next()
    {
        if (!hasNext())
            throw new NoSuchElementException();
 
        Node current = traversal.pop();
 
        if (current.right != null)
            moveLeft(current.right);
 
        return current;
    }
}
 
// Class to Test given set of inputs
class Test {
 
    // Driver Code
    public static void main(String args[])
    {
        Node root = new Node(8);
        root.right = new Node(9);
        root.left = new Node(3);
        root.left.left = new Node(2);
        root.left.right = new Node(4);
        root.left.right.right = new Node(5);
 
        InorderIterator itr = new InorderIterator(root);
        try {
            System.out.print(itr.next().data + " ");
            System.out.print(itr.hasNext() + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.hasNext() + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.hasNext() + " ");
        }
        catch (NoSuchElementException e) {
            System.out.print("No such element Exists");
        }
    }
}

Python




# Python Program for above approach
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# Inorder Iterator class
class InorderIterator:
    def __init__(self, root):
        self.traversal = []
        self.moveLeft(root)
 
    def moveLeft(self, current):
        while current != None:
            self.traversal.append(current)
            current = current.left
 
    def hasNext(self):
        return len(self.traversal) > 0
 
    def next(self):
        if not self.hasNext():
            raise Exception('No such element Exists')
 
        current = self.traversal.pop()
 
        if current.right != None:
            self.moveLeft(current.right)
 
        return current
 
# Class to Test given set of inputs
 
# Driver Code
root = Node(8)
root.right = Node(9)
root.left = Node(3)
root.left.left = Node(2)
root.left.right = Node(4)
root.left.right.right = Node(5)
 
itr = InorderIterator(root)
try:
    print(itr.next().data)
    print(itr.hasNext())
    print(itr.next().data)
    print(itr.next().data)
    print(itr.next().data)
    print(itr.hasNext())
    print(itr.next().data)
    print(itr.next().data)
    print(itr.hasNext())
except Exception as e:
    print("No such element Exists")
     
# This code is contributed by adityamaharshi21

C#




// C# code for the above approach
using System;
using System.Collections.Generic;
 
// Structure of a Node
class Node
{
  public int Data { get; set; }
  public Node Left { get; set; }
  public Node Right { get; set; }
 
  public Node(int data)
  {
    Data = data;
    Left = Right = null;
  }
}
 
// Inorder Iterator class
class InorderIterator
{
  private Stack<Node> traversal;
 
  public InorderIterator(Node root)
  {
    traversal = new Stack<Node>();
    MoveLeft(root);
  }
 
  private void MoveLeft(Node current)
  {
    while (current != null)
    {
      traversal.Push(current);
      current = current.Left;
    }
  }
 
  public bool HasNext()
  {
    return traversal.Count > 0;
  }
 
  public Node Next()
  {
    if (!HasNext())
      throw new InvalidOperationException("No more elements in the inorder traversal.");
 
    Node current = traversal.Pop();
 
    if (current.Right != null)
      MoveLeft(current.Right);
 
    return current;
  }
}
 
// Class to Test given set of inputs
class GFG
{
  // Driver Code
  static void Main(string[] args)
  {
    Node root = new Node(8);
    root.Right = new Node(9);
    root.Left = new Node(3);
    root.Left.Left = new Node(2);
    root.Left.Right = new Node(4);
    root.Left.Right.Right = new Node(5);
 
    InorderIterator itr = new InorderIterator(root);
    try
    {
      Console.Write(itr.Next().Data + " ");
      Console.Write(itr.HasNext() + " ");
      Console.Write(itr.Next().Data + " ");
      Console.Write(itr.Next().Data + " ");
      Console.Write(itr.Next().Data + " ");
      Console.Write(itr.HasNext() + " ");
      Console.Write(itr.Next().Data + " ");
      Console.Write(itr.Next().Data + " ");
      Console.Write(itr.HasNext() + " ");
    }
    catch (InvalidOperationException e)
    {
      Console.Write("No such element Exists");
    }
  }
}
 
// This code is contributed by Potta Lokesh

Javascript




// Javascript Program for above approach
class Node {
    constructor(data) {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
// Inorder Iterator class
class InorderIterator {
    constructor(root) {
        this.traversal = [];
        this.moveLeft(root);
    }
 
    moveLeft(current) {
        while (current != null) {
            this.traversal.push(current);
            current = current.left;
        }
    }
 
    hasNext() {
        return this.traversal.length > 0;
    }
 
    next() {
        if (!this.hasNext())
            throw new Error('No such element Exists');
 
        let current = this.traversal.pop();
 
        if (current.right != null)
            this.moveLeft(current.right);
 
        return current;
    }
}
 
// Class to Test given set of inputs
 
 
// Driver Code
let root = new Node(8);
root.right = new Node(9);
root.left = new Node(3);
root.left.left = new Node(2);
root.left.right = new Node(4);
root.left.right.right = new Node(5);
 
let itr = new InorderIterator(root);
try {
    console.log(itr.next().data + " ");
    console.log(itr.hasNext() + " ");
    console.log(itr.next().data + " ");
    console.log(itr.next().data + " ");
    console.log(itr.next().data + " ");
    console.log(itr.hasNext() + " ");
    console.log(itr.next().data + " ");
    console.log(itr.next().data + " ");
    console.log(itr.hasNext() + " ");
}
catch (e) {
    console.log("No such element Exists");
}
 
// This code is contributed by adityamaharshi21

Output

2 true 3 4 5 true 8 9 false 

Time Complexity: O(N), Where N is the number of nodes in the binary tree. 
Auxiliary Space: O(N), The Stack will hold all N elements in the worst case.

Efficient Approach: Morris Traversal can be used to solve this question using constant space. The idea behind morris traversal is to create a temporary link between a node and the right-most node in its left sub-tree so that the ancestor node can be backtracked. A reference of the ancestor node is set to the right child of the right-most node in its left sub-tree. 

Algorithm: 

Class is Instantiated 

Initialize current = root and rightMost = NULL

hasNext() function

IF current != NULL

   return true

ELSE

   return false

 

next() function

  • IF current = NULL ( or hasNext() returns false)
    • Throw an exception
  • ELSE
    • IF current.left = NULL
      • Initialize temp = current
      • current = current.right
      • return temp
    • ELSE
      • Initialize rightMost = current->left
      • while rightMost.right != NULL && rightMost.right != current
        • rightMost = rightMost.right
        • IF rightMost.right == NULL
          • rightMost.right = current
          • current = current.left
        • ELSE
          • temp = current
          • rightMost.right = null
          • current = current.right
          • return current
        • Call the function again

 

Below is the implementation of above approach.

 

C++




#include <iostream>
#include <stack>
 
struct Node {
    int data;
    Node *left, *right;
 
    Node(int data) {
        this->data = data;
        this->left = this->right = NULL;
    }
};
 
class InorderIterator {
private:
    Node *current, *rightMost;
public:
    InorderIterator(Node *root) {
        current = root;
        rightMost = NULL;
    }
 
    bool hasNext() { return current != NULL; }
 
    Node* next() {
        if (!hasNext()) {
            std::cout << "No such element exists" << std::endl;
            return NULL;
        }
 
        if (current->left == NULL) {
            Node *temp = current;
            current = current->right;
            return temp;
        }
 
        rightMost = current->left;
 
        while (rightMost->right != NULL
               && rightMost->right != current) {
            rightMost = rightMost->right;
        }
 
        if (rightMost->right == NULL) {
            rightMost->right = current;
            current = current->left;
        } else {
            rightMost->right = NULL;
            Node *temp = current;
            current = current->right;
            return temp;
        }
 
        return next();
    }
};
 
int main() {
    Node *root = new Node(8);
    root->right = new Node(9);
    root->left = new Node(3);
    root->left->left = new Node(2);
    root->left->right = new Node(4);
    root->left->right->right = new Node(5);
 
    InorderIterator itr(root);
    std::cout << itr.next()->data << " ";
    std::cout << itr.hasNext() << " ";
    std::cout << itr.next()->data << " ";
    std::cout << itr.next()->data << " ";
    std::cout << itr.next()->data << " ";
    std::cout << itr.hasNext() << " ";
    std::cout << itr.next()->data << " ";
    std::cout << itr.next()->data << " ";
    std::cout << itr.hasNext() << " ";
    return 0;
}
 
// This code is contributed by anskalyan3.

Java




// Java Program for above approach
import java.util.*;
 
// Structure of a Node
class Node {
    int data;
    Node left;
    Node right;
 
    Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
 
// Inorder Iterator class
class InorderIterator {
    private Node current, rightMost;
 
    InorderIterator(Node root)
    {
        current = root;
        rightMost = null;
    }
 
    public boolean hasNext() { return current != null; }
 
    public Node next()
    {
        if (!hasNext())
            throw new NoSuchElementException();
 
        if (current.left == null) {
            Node temp = current;
            current = current.right;
            return temp;
        }
 
        rightMost = current.left;
 
        while (rightMost.right != null
               && rightMost.right != current)
            rightMost = rightMost.right;
 
        if (rightMost.right == null) {
            rightMost.right = current;
            current = current.left;
        }
 
        else {
            rightMost.right = null;
            Node temp = current;
            current = current.right;
            return temp;
        }
 
        return next();
    }
}
 
class Test {
 
    // Driver Code
    public static void main(String args[])
    {
        Node root = new Node(8);
        root.right = new Node(9);
        root.left = new Node(3);
        root.left.left = new Node(2);
        root.left.right = new Node(4);
        root.left.right.right = new Node(5);
 
        InorderIterator itr = new InorderIterator(root);
        try {
            System.out.print(itr.next().data + " ");
            System.out.print(itr.hasNext() + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.hasNext() + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.next().data + " ");
            System.out.print(itr.hasNext() + " ");
        }
        catch (NoSuchElementException e) {
            System.out.print("No such element Exists");
        }
    }
}

Python




class Node:
    def __init__(self, data):
        self.data = data
        self.left = self.right = None
 
 
class InorderIterator:
    def __init__(self, root):
        self.current = root
        self.right_most = None
 
    def has_next(self):
        return self.current is not None
 
    def next(self):
        if not self.has_next():
            print("No such element exists")
            return None
 
        if self.current.left is None:
            temp = self.current
            self.current = self.current.right
            return temp
 
        self.right_most = self.current.left
 
        while self.right_most.right is not None and self.right_most.right != self.current:
            self.right_most = self.right_most.right
 
        if self.right_most.right is None:
            self.right_most.right = self.current
            self.current = self.current.left
        else:
            self.right_most.right = None
            temp = self.current
            self.current = self.current.right
            return temp
 
        return self.next()
 
 
root = Node(8)
root.right = Node(9)
root.left = Node(3)
root.left.left = Node(2)
root.left.right = Node(4)
root.left.right.right = Node(5)
 
itr = InorderIterator(root)
print(itr.next().data)
print(itr.has_next())
print(itr.next().data)
print(itr.next().data)
print(itr.next().data)
print(itr.has_next())
print(itr.next().data)
print(itr.next().data)
print(itr.has_next())

Javascript




// JavaScript program for above approach
class Node {
    constructor(data) {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
class InorderIterator {
    constructor(root) {
        this.current = root;
        this.rightMost = null;
    }
 
    hasNext() { return this.current != null; }
 
    next() {
        if (!this.hasNext())
            throw new Error("No such element Exists");
 
        if (this.current.left == null) {
            let temp = this.current;
            this.current = this.current.right;
            return temp;
        }
 
        this.rightMost = this.current.left;
 
        while (this.rightMost.right != null
               && this.rightMost.right != this.current)
            this.rightMost = this.rightMost.right;
 
        if (this.rightMost.right == null) {
            this.rightMost.right = this.current;
            this.current = this.current.left;
        }
 
        else {
            this.rightMost.right = null;
            let temp = this.current;
            this.current = this.current.right;
            return temp;
        }
 
        return this.next();
    }
}
 
let root = new Node(8);
root.right = new Node(9);
root.left = new Node(3);
root.left.left = new Node(2);
root.left.right = new Node(4);
root.left.right.right = new Node(5);
 
let itr = new InorderIterator(root);
try {
    console.log(itr.next().data + " ");
    console.log(itr.hasNext() + " ");
    console.log(itr.next().data + " ");
    console.log(itr.next().data + " ");
    console.log(itr.next().data + " ");
    console.log(itr.hasNext() + " ");
    console.log(itr.next().data + " ");
    console.log(itr.next().data + " ");
    console.log(itr.hasNext() + " ");
}
catch (e) {
    console.log("No such element Exists");
}
 
// This code is contributed by adityamaharshi21

C#




// C# Program for above approach
 
using System;
using System.Collections.Generic;
 
// Structure of a Node
public class Node {
    public int data;
    public Node left, right;
    public Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
 
// Inorder Iterator class
public class InorderIterator {
    private Node current, rightMost;
    public InorderIterator(Node root)
    {
        current = root;
        rightMost = null;
    }
 
    public bool HasNext() { return current != null; }
 
    public Node Next()
    {
        if (!HasNext())
            throw new Exception("No such element exists");
 
        if (current.left == null) {
            Node temp = current;
            current = current.right;
            return temp;
        }
 
        rightMost = current.left;
 
        while (rightMost.right != null
               && rightMost.right != current)
            rightMost = rightMost.right;
 
        if (rightMost.right == null) {
            rightMost.right = current;
            current = current.left;
        }
 
        else {
            rightMost.right = null;
            Node temp = current;
            current = current.right;
            return temp;
        }
 
        return Next();
    }
}
 
public class GFG {
 
    static public void Main()
    {
 
        // Code
        Node root = new Node(8);
        root.right = new Node(9);
        root.left = new Node(3);
        root.left.left = new Node(2);
        root.left.right = new Node(4);
        root.left.right.right = new Node(5);
 
        InorderIterator itr = new InorderIterator(root);
        try {
            Console.Write(itr.Next().data + " ");
            Console.Write(itr.HasNext() + " ");
            Console.Write(itr.Next().data + " ");
            Console.Write(itr.Next().data + " ");
            Console.Write(itr.Next().data + " ");
            Console.Write(itr.HasNext() + " ");
            Console.Write(itr.Next().data + " ");
            Console.Write(itr.Next().data + " ");
            Console.Write(itr.HasNext() + " ");
        }
        catch (Exception e) {
            Console.Write("No such element Exists");
        }
    }
}
 
// This code is contributed by karthik

 
 

Output

2 true 3 4 5 true 8 9 false 

 

Time Complexity: O(N), where N is the number of nodes in the binary tree. Although we are creating temporary links are created and nodes are traversed multiple times (at most 3 times), the time complexity is still linear.
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Last Updated : 20 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials