Binary Insertion Sort

We can use binary search to reduce the number of comparisons in normal insertion sort. Binary Insertion Sort uses binary search to find the proper location to insert the selected item at each iteration.
In normal insertion sort, it takes O(n) comparisons(at nth iteration) in worst case. We can reduce it to O(log n) by using binary search.

C/C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program for implementation of binary insertion sort
#include <stdio.h>
  
// A binary search based function to find the position
// where item should be inserted in a[low..high]
int binarySearch(int a[], int item, int low, int high)
{
    if (high <= low)
        return (item > a[low])?  (low + 1): low;
  
    int mid = (low + high)/2;
  
    if(item == a[mid])
        return mid+1;
  
    if(item > a[mid])
        return binarySearch(a, item, mid+1, high);
    return binarySearch(a, item, low, mid-1);
}
  
// Function to sort an array a[] of size 'n'
void insertionSort(int a[], int n)
{
    int i, loc, j, k, selected;
  
    for (i = 1; i < n; ++i)
    {
        j = i - 1;
        selected = a[i];
  
        // find location where selected sould be inseretd
        loc = binarySearch(a, selected, 0, j);
  
        // Move all elements after location to create space
        while (j >= loc)
        {
            a[j+1] = a[j];
            j--;
        }
        a[j+1] = selected;
    }
}
  
// Driver program to test above function
int main()
{
    int a[] = {37, 23, 0, 17, 12, 72, 31,
              46, 100, 88, 54};
    int n = sizeof(a)/sizeof(a[0]), i;
  
    insertionSort(a, n);
  
    printf("Sorted array: \n");
    for (i = 0; i < n; i++)
        printf("%d ",a[i]);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program implementing
// binary insertion sort
  
import java.util.Arrays;
class GFG
{
    public static void main(String[] args)
    {
        final int[] arr = {37, 23, 0, 17, 12, 72, 31,
                             46, 100, 88, 54 };
  
        new GFG().sort(arr);
  
        for(int i=0; i<arr.length; i++)
            System.out.print(arr[i]+" ");
    }
  
    public void sort(int array[])
    {
        for (int i = 1; i < array.length; i++)
        {
            int x = array[i];
  
            // Find location to insert using binary search
            int j = Math.abs(Arrays.binarySearch(array, 0, i, x) + 1);
  
            //Shifting array to one location right
            System.arraycopy(array, j, array, j+1, i-j);
  
            //Placing element at its correct location
            array[j] = x;
        }
    }
}
  
// Code contributed by Mohit Gupta_OMG 

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program implementation  
# of binary insertion sort
  
def binary_search(arr, val, start, end):
    # we need to distinugish whether we should insert
    # before or after the left boundary.
    # imagine [0] is the last step of the binary search
    # and we need to decide where to insert -1
    if start == end:
        if arr[start] > val:
            return start
        else:
            return start+1
  
    # this occurs if we are moving beyond left's boundary
    # meaning the left boundary is the least position to
    # find a number greater than val
    if start > end:
        return start
  
    mid = (start+end)/2
    if arr[mid] < val:
        return binary_search(arr, val, mid+1, end)
    elif arr[mid] > val:
        return binary_search(arr, val, start, mid-1)
    else:
        return mid
  
def insertion_sort(arr):
    for i in xrange(1, len(arr)):
        val = arr[i]
        j = binary_search(arr, val, 0, i-1)
        arr = arr[:j] + [val] + arr[j:i] + arr[i+1:]
    return arr
  
print("Sorted array:")
print insertion_sort([37, 23, 0, 17, 12, 72, 31,
                        46, 100, 88, 54])
  
# Code contributed by Mohit Gupta_OMG 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program implementing
// binary insertion sort
using System;
  
class GFG {
      
    public static void Main()
    {
        int []arr = {37, 23, 0, 17, 12, 72, 31,
                             46, 100, 88, 54 };
  
        sort(arr);
  
        for(int i = 0; i < arr.Length; i++)
            Console.Write(arr[i] + " ");
    }
  
    public static void sort(int []array)
    {
        for (int i = 1; i < array.Length; i++)
        {
            int x = array[i];
  
            // Find location to insert using
            // binary search
            int j = Math.Abs(Array.BinarySearch(
                              array, 0, i, x) + 1);
  
            // Shifting array to one location right
            System.Array.Copy(array, j, array,
                                         j+1, i-j);
  
            // Placing element at its correct
            // location
            array[j] = x;
        }
    }
}
  
// This code is contributed by nitin mittal.

chevron_right



Output:

Sorted array:
0 12 17 23 31 37 46 54 72 88 100

Time Complexity: The algorithm as a whole still has a running worst case running time of O(n2) because of the series of swaps required for each insertion.

This article is contributed by Amit Auddy. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



My Personal Notes arrow_drop_up