Given here is a right angle triangle with height **l**, base **b** & hypotenuse **h**, which inscribes a square which in turn inscribes a reuleaux triangle. The task is to find the maximum possible area of this reuleaux triangle.

**Examples:**

Input:l = 5, b = 12, h = 13Output:8.77914Input:l = 3, b = 4, h = 5Output:2.07116

**Approach**: We know, the side of the square inscribed within a right angled triangle is, **a = (l*b)/(l+b)**, please refer Area of a largest square fit in a right angle triangle.

Also, in the reuleaux triangle, **x = a**.

So, **x = (l*b)/(l+b)**.

So, Area of the Reuleaux Triangle is**, A = 0.70477*x^2 = 0.70477*((l*b)/(l+b))^2**.

Below is the implementation of the above approach:

## C++

`// C++ Program to find the biggest Reuleaux triangle ` `// inscribed within in a square which in turn ` `// is inscribed within a circle ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to find the biggest reuleaux triangle ` `float` `Area(` `float` `l, ` `float` `b, ` `float` `h) ` `{ ` ` ` ` ` `// the height or base or hypotenuse ` ` ` `// cannot be negative ` ` ` `if` `(l < 0 || b < 0 || h < 0) ` ` ` `return` `-1; ` ` ` ` ` `// height of the reuleaux triangle ` ` ` `float` `x = (l * b) / (l + b); ` ` ` ` ` `// area of the reuleaux triangle ` ` ` `float` `A = 0.70477 * ` `pow` `(x, 2); ` ` ` ` ` `return` `A; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `float` `l = 5, b = 12, h = 13; ` ` ` `cout << Area(l, b, h) << endl; ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java Program to find the biggest Reuleaux triangle ` `// inscribed within in a square which in turn ` `// is inscribed within a circle ` `import` `java.util.*; ` `import` `java.text.DecimalFormat; ` ` ` `class` `GFG ` `{ ` ` ` `// Function to find the biggest reuleaux triangle ` `static` `double` `Area(` `double` `l, ` `double` `b, ` `double` `h) ` `{ ` ` ` ` ` `// the height or base or hypotenuse ` ` ` `// cannot be negative ` ` ` `if` `(l < ` `0` `|| b < ` `0` `|| h < ` `0` `) ` ` ` `return` `-` `1` `; ` ` ` ` ` `// height of the reuleaux triangle ` ` ` `double` `x = (l * b) / (l + b); ` ` ` ` ` `// area of the reuleaux triangle ` ` ` `double` `A = ` `0.70477` `* Math.pow(x, ` `2` `); ` ` ` ` ` `return` `A; ` `} ` ` ` `// Driver code ` `public` `static` `void` `main(String args[]) ` `{ ` ` ` `double` `l = ` `5` `, b = ` `12` `, h = ` `13` `; ` ` ` `DecimalFormat df = ` `new` `DecimalFormat(` `"#,###,##0.00000"` `); ` ` ` `System.out.println(df.format(Area(l, b, h))); ` `} ` `} ` ` ` `// This code is contributed by ` `// Shashank_Sharma ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 Program to find the biggest ` `# Reuleaux triangle inscribed within ` `# in a square which in turn is inscribed ` `# within a circle ` `import` `math as mt ` ` ` `# Function to find the biggest ` `# reuleaux triangle ` `def` `Area(l, b, h): ` ` ` ` ` `# the height or base or hypotenuse ` ` ` `# cannot be negative ` ` ` `if` `(l < ` `0` `or` `b < ` `0` `or` `h < ` `0` `): ` ` ` `return` `-` `1` ` ` ` ` `# height of the reuleaux triangle ` ` ` `x ` `=` `(l ` `*` `b) ` `/` `(l ` `+` `b) ` ` ` ` ` `# area of the reuleaux triangle ` ` ` `A ` `=` `0.70477` `*` `pow` `(x, ` `2` `) ` ` ` ` ` `return` `A ` ` ` `# Driver code ` `l, b, h ` `=` `5` `, ` `12` `, ` `13` `print` `(Area(l, b, h)) ` ` ` `# This code is contributed by ` `# Mohit kumar 29 ` |

*chevron_right*

*filter_none*

## C#

`// C# Program to find the biggest Reuleaux triangle ` `// inscribed within in a square which in turn ` `// is inscribed within a circle ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` `// Function to find the biggest reuleaux triangle ` `static` `double` `Area(` `double` `l, ` `double` `b, ` `double` `h) ` `{ ` ` ` ` ` `// the height or base or hypotenuse ` ` ` `// cannot be negative ` ` ` `if` `(l < 0 || b < 0 || h < 0) ` ` ` `return` `-1; ` ` ` ` ` `// height of the reuleaux triangle ` ` ` `double` `x = (l * b) / (l + b); ` ` ` ` ` `// area of the reuleaux triangle ` ` ` `double` `A = 0.70477 * Math.Pow(x, 2); ` ` ` ` ` `return` `A; ` `} ` ` ` `// Driver code ` `public` `static` `void` `Main() ` `{ ` ` ` `double` `l = 5, b = 12, h = 13; ` ` ` `Console.WriteLine((Area(l, b, h))); ` `} ` `} ` ` ` `// This code is contributed by ` `// Mukul Singh ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP Program to find the biggest ` `// Reuleaux triangle inscribed within ` `// in a square which in turn is ` `// inscribed within a circle ` ` ` `// Function to find the biggest ` `// reuleaux triangle ` `function` `Area(` `$l` `, ` `$b` `, ` `$h` `) ` `{ ` ` ` ` ` `// the height or base or hypotenuse ` ` ` `// cannot be negative ` ` ` `if` `(` `$l` `< 0 ` `or` `$b` `< 0 ` `or` `$h` `< 0) ` ` ` `return` `-1; ` ` ` ` ` `// height of the reuleaux triangle ` ` ` `$x` `= (` `$l` `* ` `$b` `) / (` `$l` `+ ` `$b` `); ` ` ` ` ` `// area of the reuleaux triangle ` ` ` `$A` `= 0.70477 * pow(` `$x` `, 2); ` ` ` ` ` `return` `$A` `; ` `} ` ` ` `// Driver code ` `$l` `= 5; ` `$b` `= 12; ` `$h` `= 13; ` `echo` `Area(` `$l` `, ` `$b` `, ` `$h` `); ` ` ` `// This code is contributed by ` `// anuj_67 ` `?> ` |

*chevron_right*

*filter_none*

**Output:**

8.77914

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Biggest Reuleaux Triangle inscribed within a square which is inscribed within an ellipse
- Biggest Reuleaux Triangle inscribed within a square which is inscribed within a hexagon
- Biggest Reuleaux Triangle inscribed within a Square inscribed in an equilateral triangle
- Biggest Reuleaux Triangle within a Square which is inscribed within a Circle
- Biggest Reuleaux Triangle inscirbed within a square inscribed in a semicircle
- Largest square that can be inscribed within a hexagon which is inscribed within an equilateral triangle
- Biggest Reuleaux Triangle within A Square
- Largest right circular cylinder that can be inscribed within a cone which is in turn inscribed within a cube
- Largest right circular cone that can be inscribed within a sphere which is inscribed within a cube
- Largest sphere that can be inscribed within a cube which is in turn inscribed within a right circular cone
- Biggest Square that can be inscribed within an Equilateral triangle
- Largest ellipse that can be inscribed within a rectangle which in turn is inscribed within a semicircle
- Radius of the biggest possible circle inscribed in rhombus which in turn is inscribed in a rectangle
- Area of a square inscribed in a circle which is inscribed in an equilateral triangle
- Nth angle of a Polygon whose initial angle and per angle increment is given
- Area of the biggest ellipse inscribed within a rectangle
- Area of a square inscribed in a circle which is inscribed in a hexagon
- Area of a triangle inscribed in a rectangle which is inscribed in an ellipse
- Area of a largest square fit in a right angle triangle
- Area of Triangle using Side-Angle-Side (length of two sides and the included angle)

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.