Given here is a right angle triangle with height **l**, base **b** & hypotenuse **h**, which inscribes a square which in turn inscribes a reuleaux triangle. The task is to find the maximum possible area of this reuleaux triangle.**Examples:**

Input:l = 5, b = 12, h = 13Output:8.77914Input:l = 3, b = 4, h = 5Output:2.07116

**Approach**: We know, the side of the square inscribed within a right angled triangle is, **a = (l*b)/(l+b)**, please refer Area of a largest square fit in a right angle triangle.

Also, in the reuleaux triangle, **x = a**.

So, **x = (l*b)/(l+b)**.

So, Area of the Reuleaux Triangle is**, A = 0.70477*x^2 = 0.70477*((l*b)/(l+b))^2**.

Below is the implementation of the above approach:

## C++

`// C++ Program to find the biggest Reuleaux triangle` `// inscribed within in a square which in turn` `// is inscribed within a circle` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the biggest reuleaux triangle` `float` `Area(` `float` `l, ` `float` `b, ` `float` `h)` `{` ` ` `// the height or base or hypotenuse` ` ` `// cannot be negative` ` ` `if` `(l < 0 || b < 0 || h < 0)` ` ` `return` `-1;` ` ` `// height of the reuleaux triangle` ` ` `float` `x = (l * b) / (l + b);` ` ` `// area of the reuleaux triangle` ` ` `float` `A = 0.70477 * ` `pow` `(x, 2);` ` ` `return` `A;` `}` `// Driver code` `int` `main()` `{` ` ` `float` `l = 5, b = 12, h = 13;` ` ` `cout << Area(l, b, h) << endl;` ` ` `return` `0;` `}` |

## Java

`// Java Program to find the biggest Reuleaux triangle` `// inscribed within in a square which in turn` `// is inscribed within a circle` `import` `java.util.*;` `import` `java.text.DecimalFormat;` `class` `GFG` `{` `// Function to find the biggest reuleaux triangle` `static` `double` `Area(` `double` `l, ` `double` `b, ` `double` `h)` `{` ` ` `// the height or base or hypotenuse` ` ` `// cannot be negative` ` ` `if` `(l < ` `0` `|| b < ` `0` `|| h < ` `0` `)` ` ` `return` `-` `1` `;` ` ` `// height of the reuleaux triangle` ` ` `double` `x = (l * b) / (l + b);` ` ` `// area of the reuleaux triangle` ` ` `double` `A = ` `0.70477` `* Math.pow(x, ` `2` `);` ` ` `return` `A;` `}` `// Driver code` `public` `static` `void` `main(String args[])` `{` ` ` `double` `l = ` `5` `, b = ` `12` `, h = ` `13` `;` ` ` `DecimalFormat df = ` `new` `DecimalFormat(` `"#,###,##0.00000"` `);` ` ` `System.out.println(df.format(Area(l, b, h)));` `}` `}` `// This code is contributed by` `// Shashank_Sharma` |

## Python3

`# Python3 Program to find the biggest` `# Reuleaux triangle inscribed within` `# in a square which in turn is inscribed` `# within a circle` `import` `math as mt` `# Function to find the biggest` `# reuleaux triangle` `def` `Area(l, b, h):` ` ` `# the height or base or hypotenuse` ` ` `# cannot be negative` ` ` `if` `(l < ` `0` `or` `b < ` `0` `or` `h < ` `0` `):` ` ` `return` `-` `1` ` ` `# height of the reuleaux triangle` ` ` `x ` `=` `(l ` `*` `b) ` `/` `(l ` `+` `b)` ` ` `# area of the reuleaux triangle` ` ` `A ` `=` `0.70477` `*` `pow` `(x, ` `2` `)` ` ` `return` `A` `# Driver code` `l, b, h ` `=` `5` `, ` `12` `, ` `13` `print` `(Area(l, b, h))` `# This code is contributed by` `# Mohit kumar 29` |

## C#

`// C# Program to find the biggest Reuleaux triangle` `// inscribed within in a square which in turn` `// is inscribed within a circle` `using` `System;` `class` `GFG` `{` `// Function to find the biggest reuleaux triangle` `static` `double` `Area(` `double` `l, ` `double` `b, ` `double` `h)` `{` ` ` `// the height or base or hypotenuse` ` ` `// cannot be negative` ` ` `if` `(l < 0 || b < 0 || h < 0)` ` ` `return` `-1;` ` ` `// height of the reuleaux triangle` ` ` `double` `x = (l * b) / (l + b);` ` ` `// area of the reuleaux triangle` ` ` `double` `A = 0.70477 * Math.Pow(x, 2);` ` ` `return` `A;` `}` `// Driver code` `public` `static` `void` `Main()` `{` ` ` `double` `l = 5, b = 12, h = 13;` ` ` `Console.WriteLine((Area(l, b, h)));` `}` `}` `// This code is contributed by` `// Mukul Singh` |

## PHP

`<?php` `// PHP Program to find the biggest` `// Reuleaux triangle inscribed within` `// in a square which in turn is` `// inscribed within a circle` `// Function to find the biggest` `// reuleaux triangle` `function` `Area(` `$l` `, ` `$b` `, ` `$h` `)` `{` ` ` `// the height or base or hypotenuse` ` ` `// cannot be negative` ` ` `if` `(` `$l` `< 0 ` `or` `$b` `< 0 ` `or` `$h` `< 0)` ` ` `return` `-1;` ` ` `// height of the reuleaux triangle` ` ` `$x` `= (` `$l` `* ` `$b` `) / (` `$l` `+ ` `$b` `);` ` ` `// area of the reuleaux triangle` ` ` `$A` `= 0.70477 * pow(` `$x` `, 2);` ` ` `return` `$A` `;` `}` `// Driver code` `$l` `= 5; ` `$b` `= 12; ` `$h` `= 13;` `echo` `Area(` `$l` `, ` `$b` `, ` `$h` `);` `// This code is contributed by` `// anuj_67` `?>` |

## Javascript

`<script>` `// Javascript Program to find the biggest Reuleaux triangle` `// inscribed within in a square which in turn` `// is inscribed within a circle` `// Function to find the biggest reuleaux triangle` `function` `Area(l,b,h)` `{` ` ` `// the height or base or hypotenuse` ` ` `// cannot be negative` ` ` `if` `(l < 0 || b < 0 || h < 0)` ` ` `return` `-1;` ` ` `// height of the reuleaux triangle` ` ` `let x = (l * b) / (l + b);` ` ` `// area of the reuleaux triangle` ` ` `let A = 0.70477 * Math.pow(x, 2);` ` ` `return` `A;` `}` `// Driver code` `let l = 5, b = 12, h = 13;` ` ` ` ` `document.write( Area(l,b,h).toFixed(5));` `// This code contributed by Rajput-Ji` `</script>` |

**Output:**

8.77914

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend live classes with industry experts, please refer **DSA Live Classes**