Skip to content
Related Articles

Related Articles

Improve Article
Biggest Reuleaux Triangle within a Square which is inscribed within a Right angle Triangle
  • Last Updated : 16 Mar, 2021

Given here is a right angle triangle with height l, base b & hypotenuse h, which inscribes a square which in turn inscribes a reuleaux triangle. The task is to find the maximum possible area of this reuleaux triangle.
Examples: 
 

Input: l = 5, b = 12, h = 13
Output: 8.77914

Input: l = 3, b = 4, h = 5
Output: 2.07116

 

 

Approach: We know, the side of the square inscribed within a right angled triangle is, a = (l*b)/(l+b), please refer Area of a largest square fit in a right angle triangle
Also, in the reuleaux triangle, x = a
So, x = (l*b)/(l+b)
So, Area of the Reuleaux Triangle is, A = 0.70477*x^2 = 0.70477*((l*b)/(l+b))^2.
Below is the implementation of the above approach: 
 



C++




// C++ Program to find the biggest Reuleaux triangle
// inscribed within in a square which in turn
// is inscribed within a circle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the biggest reuleaux triangle
float Area(float l, float b, float h)
{
 
    // the height or base or hypotenuse
    // cannot be negative
    if (l < 0 || b < 0 || h < 0)
        return -1;
 
    // height of the reuleaux triangle
    float x = (l * b) / (l + b);
 
    // area of the reuleaux triangle
    float A = 0.70477 * pow(x, 2);
 
    return A;
}
 
// Driver code
int main()
{
    float l = 5, b = 12, h = 13;
    cout << Area(l, b, h) << endl;
 
    return 0;
}

Java




// Java Program to find the biggest Reuleaux triangle
// inscribed within in a square which in turn
// is inscribed within a circle
import java.util.*;
import java.text.DecimalFormat;
 
class GFG
{
 
// Function to find the biggest reuleaux triangle
static double Area(double l, double b, double h)
{
 
    // the height or base or hypotenuse
    // cannot be negative
    if (l < 0 || b < 0 || h < 0)
        return -1;
 
    // height of the reuleaux triangle
    double x = (l * b) / (l + b);
 
    // area of the reuleaux triangle
    double A = 0.70477 * Math.pow(x, 2);
 
    return A;
}
 
// Driver code
public static void main(String args[])
{
    double l = 5, b = 12, h = 13;
    DecimalFormat df = new DecimalFormat("#,###,##0.00000");
    System.out.println(df.format(Area(l, b, h)));
}
}
 
// This code is contributed by
// Shashank_Sharma

Python3




# Python3 Program to find the biggest
# Reuleaux triangle inscribed within
# in a square which in turn is inscribed
# within a circle
import math as mt
 
# Function to find the biggest
# reuleaux triangle
def Area(l, b, h):
 
    # the height or base or hypotenuse
    # cannot be negative
    if (l < 0 or b < 0 or h < 0):
        return -1
 
    # height of the reuleaux triangle
    x = (l * b) /(l + b)
 
    # area of the reuleaux triangle
    A = 0.70477 * pow(x, 2)
 
    return A
 
# Driver code
l, b, h = 5, 12, 13
print(Area(l, b, h))
 
# This code is contributed by
# Mohit kumar 29

C#




// C# Program to find the biggest Reuleaux triangle
// inscribed within in a square which in turn
// is inscribed within a circle
using System;
 
class GFG
{
 
// Function to find the biggest reuleaux triangle
static double Area(double l, double b, double h)
{
 
    // the height or base or hypotenuse
    // cannot be negative
    if (l < 0 || b < 0 || h < 0)
        return -1;
 
    // height of the reuleaux triangle
    double x = (l * b) / (l + b);
 
    // area of the reuleaux triangle
    double A = 0.70477 * Math.Pow(x, 2);
 
    return A;
}
 
// Driver code
public static void Main()
{
    double l = 5, b = 12, h = 13;
    Console.WriteLine((Area(l, b, h)));
}
}
 
// This code is contributed by
// Mukul Singh

PHP




<?php
// PHP Program to find the biggest
// Reuleaux triangle inscribed within
// in a square which in turn is
// inscribed within a circle
 
// Function to find the biggest
// reuleaux triangle
function Area($l, $b, $h)
{
 
    // the height or base or hypotenuse
    // cannot be negative
    if ($l < 0 or $b < 0 or $h < 0)
        return -1;
 
    // height of the reuleaux triangle
    $x = ($l * $b) / ($l + $b);
 
    // area of the reuleaux triangle
    $A = 0.70477 * pow($x, 2);
 
    return $A;
}
 
// Driver code
$l = 5; $b = 12; $h = 13;
echo Area($l, $b, $h);
 
// This code is contributed by
// anuj_67
?>

Javascript




<script>
 
// Javascript Program to find the biggest Reuleaux triangle
// inscribed within in a square which in turn
// is inscribed within a circle
 
 
// Function to find the biggest reuleaux triangle
function Area(l,b,h)
{
 
    // the height or base or hypotenuse
    // cannot be negative
    if (l < 0 || b < 0 || h < 0)
        return -1;
 
    // height of the reuleaux triangle
    let x = (l * b) / (l + b);
 
    // area of the reuleaux triangle
    let A = 0.70477 * Math.pow(x, 2);
 
    return A;
}
 
// Driver code
let l = 5, b = 12, h = 13;
  
    document.write( Area(l,b,h).toFixed(5));
 
// This code contributed by Rajput-Ji
 
</script>
Output: 
8.77914

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :