Skip to content
Related Articles
Biggest Reuleaux Triangle within a Square which is inscribed within a Right angle Triangle
• Last Updated : 16 Mar, 2021

Given here is a right angle triangle with height l, base b & hypotenuse h, which inscribes a square which in turn inscribes a reuleaux triangle. The task is to find the maximum possible area of this reuleaux triangle.
Examples:

```Input: l = 5, b = 12, h = 13
Output: 8.77914

Input: l = 3, b = 4, h = 5
Output: 2.07116``` Approach: We know, the side of the square inscribed within a right angled triangle is, a = (l*b)/(l+b), please refer Area of a largest square fit in a right angle triangle
Also, in the reuleaux triangle, x = a
So, x = (l*b)/(l+b)
So, Area of the Reuleaux Triangle is, A = 0.70477*x^2 = 0.70477*((l*b)/(l+b))^2.
Below is the implementation of the above approach:

## C++

 `// C++ Program to find the biggest Reuleaux triangle``// inscribed within in a square which in turn``// is inscribed within a circle``#include ``using` `namespace` `std;` `// Function to find the biggest reuleaux triangle``float` `Area(``float` `l, ``float` `b, ``float` `h)``{` `    ``// the height or base or hypotenuse``    ``// cannot be negative``    ``if` `(l < 0 || b < 0 || h < 0)``        ``return` `-1;` `    ``// height of the reuleaux triangle``    ``float` `x = (l * b) / (l + b);` `    ``// area of the reuleaux triangle``    ``float` `A = 0.70477 * ``pow``(x, 2);` `    ``return` `A;``}` `// Driver code``int` `main()``{``    ``float` `l = 5, b = 12, h = 13;``    ``cout << Area(l, b, h) << endl;` `    ``return` `0;``}`

## Java

 `// Java Program to find the biggest Reuleaux triangle``// inscribed within in a square which in turn``// is inscribed within a circle``import` `java.util.*;``import` `java.text.DecimalFormat;` `class` `GFG``{` `// Function to find the biggest reuleaux triangle``static` `double` `Area(``double` `l, ``double` `b, ``double` `h)``{` `    ``// the height or base or hypotenuse``    ``// cannot be negative``    ``if` `(l < ``0` `|| b < ``0` `|| h < ``0``)``        ``return` `-``1``;` `    ``// height of the reuleaux triangle``    ``double` `x = (l * b) / (l + b);` `    ``// area of the reuleaux triangle``    ``double` `A = ``0.70477` `* Math.pow(x, ``2``);` `    ``return` `A;``}` `// Driver code``public` `static` `void` `main(String args[])``{``    ``double` `l = ``5``, b = ``12``, h = ``13``;``    ``DecimalFormat df = ``new` `DecimalFormat(``"#,###,##0.00000"``);``    ``System.out.println(df.format(Area(l, b, h)));``}``}` `// This code is contributed by``// Shashank_Sharma`

## Python3

 `# Python3 Program to find the biggest``# Reuleaux triangle inscribed within``# in a square which in turn is inscribed``# within a circle``import` `math as mt` `# Function to find the biggest``# reuleaux triangle``def` `Area(l, b, h):` `    ``# the height or base or hypotenuse``    ``# cannot be negative``    ``if` `(l < ``0` `or` `b < ``0` `or` `h < ``0``):``        ``return` `-``1` `    ``# height of the reuleaux triangle``    ``x ``=` `(l ``*` `b) ``/``(l ``+` `b)` `    ``# area of the reuleaux triangle``    ``A ``=` `0.70477` `*` `pow``(x, ``2``)` `    ``return` `A` `# Driver code``l, b, h ``=` `5``, ``12``, ``13``print``(Area(l, b, h))` `# This code is contributed by``# Mohit kumar 29`

## C#

 `// C# Program to find the biggest Reuleaux triangle``// inscribed within in a square which in turn``// is inscribed within a circle``using` `System;` `class` `GFG``{` `// Function to find the biggest reuleaux triangle``static` `double` `Area(``double` `l, ``double` `b, ``double` `h)``{` `    ``// the height or base or hypotenuse``    ``// cannot be negative``    ``if` `(l < 0 || b < 0 || h < 0)``        ``return` `-1;` `    ``// height of the reuleaux triangle``    ``double` `x = (l * b) / (l + b);` `    ``// area of the reuleaux triangle``    ``double` `A = 0.70477 * Math.Pow(x, 2);` `    ``return` `A;``}` `// Driver code``public` `static` `void` `Main()``{``    ``double` `l = 5, b = 12, h = 13;``    ``Console.WriteLine((Area(l, b, h)));``}``}` `// This code is contributed by``// Mukul Singh`

## PHP

 ``

## Javascript

 ``
Output:
`8.77914`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up