Biggest Reuleaux Triangle inscribed within a square which is inscribed within an ellipse
Given an ellipse with major axis length and minor axis 2a & 2b respectively which inscribes a square which in turn inscribes a reuleaux triangle. The task is to find the maximum possible area of this reuleaux triangle.
Examples:
Input: a = 5, b = 4 Output: 0.0722389 Input: a = 7, b = 11 Output: 0.0202076
Approach: As, the side of the square inscribed within an ellipse is, x = √(a^2 + b^2)/ab. Please refer Area of the Largest square that can be inscribed in an ellipse.
Also, in the reuleaux triangle, h = x = √(a^2 + b^2)/ab.
So, Area of the reuleaux triangle, A = 0.70477*h^2 = 0.70477*((a^2 + b^2)/a^2b^2).
Below is the implementation of the above approach:
C++
// C++ Program to find the biggest Reuleaux triangle // inscribed within in a square which in turn // is inscribed within an ellipse #include <bits/stdc++.h> using namespace std; // Function to find the biggest reuleaux triangle float Area( float a, float b) { // length of the axes cannot be negative if (a < 0 && b < 0) return -1; // height of the reuleaux triangle float h = sqrt ((( pow (a, 2) + pow (b, 2)) / ( pow (a, 2) * pow (b, 2)))); // area of the reuleaux triangle float A = 0.70477 * pow (h, 2); return A; } // Driver code int main() { float a = 5, b = 4; cout << Area(a, b) << endl; return 0; } |
Java
// Java Program to find the biggest Reuleaux triangle // inscribed within in a square which in turn // is inscribed within an ellipse import java.io.*; class GFG { // Function to find the biggest reuleaux triangle static float Area( float a, float b) { // length of the axes cannot be negative if (a < 0 && b < 0 ) return - 1 ; // height of the reuleaux triangle float h = ( float )Math.sqrt(((Math.pow(a, 2 ) + Math.pow(b, 2 )) / (Math.pow(a, 2 ) * Math.pow(b, 2 )))); // area of the reuleaux triangle float A = ( float )( 0.70477 * Math.pow(h, 2 )); return A; } // Driver code public static void main (String[] args) { float a = 5 , b = 4 ; System.out.println(Area(a, b)); } } // This code is contributed by anuj_67.. |
Python3
# Python3 Program to find the biggest Reuleaux # triangle inscribed within in a square # which in turn is inscribed within an ellipse import math; # Function to find the biggest # reuleaux triangle def Area(a, b): # length of the axes cannot # be negative if (a < 0 and b < 0 ): return - 1 ; # height of the reuleaux triangle h = math.sqrt((( pow (a, 2 ) + pow (b, 2 )) / ( pow (a, 2 ) * pow (b, 2 )))); # area of the reuleaux triangle A = 0.70477 * pow (h, 2 ); return A; # Driver code a = 5 ; b = 4 ; print ( round (Area(a, b), 7 )); # This code is contributed by chandan_jnu |
C#
// C# Program to find the biggest Reuleaux triangle // inscribed within in a square which in turn // is inscribed within an ellipse using System; class GFG { // Function to find the biggest reuleaux triangle static double Area( double a, double b) { // length of the axes cannot be negative if (a < 0 && b < 0) return -1; // height of the reuleaux triangle double h = ( double )Math.Sqrt(((Math.Pow(a, 2) + Math.Pow(b, 2)) / (Math.Pow(a, 2) * Math.Pow(b, 2)))); // area of the reuleaux triangle double A = ( double )(0.70477 * Math.Pow(h, 2)); return A; } // Driver code static void Main() { double a = 5, b = 4; Console.WriteLine(Math.Round(Area(a, b),7)); } } // This code is contributed by chandan_jnu |
PHP
<?php // PHP Program to find the biggest Reuleaux // triangle inscribed within in a square // which in turn is inscribed within an ellipse // Function to find the biggest // reuleaux triangle function Area( $a , $b ) { // length of the axes cannot // be negative if ( $a < 0 && $b < 0) return -1; // height of the reuleaux triangle $h = sqrt(((pow( $a , 2) + pow( $b , 2)) / (pow( $a , 2) * pow( $b , 2)))); // area of the reuleaux triangle $A = 0.70477 * pow( $h , 2); return $A ; } // Driver code $a = 5; $b = 4; echo round (Area( $a , $b ), 7); // This code is contributed by Ryuga ?> |
Javascript
<script> // Javascript Program to find the biggest Reuleaux triangle // inscribed within in a square which in turn // is inscribed within an ellipse // Function to find the biggest reuleaux triangle function Area(a, b) { // length of the axes cannot be negative if (a < 0 && b < 0) return -1; // height of the reuleaux triangle let h = Math.sqrt(((Math.pow(a, 2) + Math.pow(b, 2)) / (Math.pow(a, 2) * Math.pow(b, 2)))); // area of the reuleaux triangle let A = 0.70477 * Math.pow(h, 2); return A; } // Driver code let a = 5, b = 4; document.write(Area(a, b) + "<br>" ); // This code is contributed by Mayank Tyagi </script> |
Output:
0.0722389
Time Complexity: O(logn) as it is using inbuilt sqrt function
Auxiliary Space: O(1)
Please Login to comment...