Skip to content
Related Articles

Related Articles

Improve Article
Biggest Reuleaux Triangle inscribed within a square which is inscribed within an ellipse
  • Last Updated : 17 Mar, 2021

Given an ellipse with major axis length and minor axis 2a & 2b respectively which inscribes a square which in turn inscribes a reuleaux triangle. The task is to find the maximum possible area of this reuleaux triangle.
Examples: 
 

Input: a = 5, b = 4
Output: 0.0722389

Input: a = 7, b = 11
Output: 0.0202076

 

 

Approach: As, the side of the square inscribed within an ellipse is, x = √(a^2 + b^2)/ab. Please refer Area of the Largest square that can be inscribed in an ellipse. 
Also, in the reuleaux triangle, h = x = √(a^2 + b^2)/ab
So, Area of the reuleaux triangle, A = 0.70477*h^2 = 0.70477*((a^2 + b^2)/a^2b^2).
Below is the implementation of the above approach: 
 



C++




// C++ Program to find the biggest Reuleaux triangle
// inscribed within in a square which in turn
// is inscribed within an ellipse
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the biggest reuleaux triangle
float Area(float a, float b)
{
 
    // length of the axes cannot be negative
    if (a < 0 && b < 0)
        return -1;
 
    // height of the reuleaux triangle
    float h = sqrt(((pow(a, 2) + pow(b, 2))
                    / (pow(a, 2) * pow(b, 2))));
 
    // area of the reuleaux triangle
    float A = 0.70477 * pow(h, 2);
 
    return A;
}
 
// Driver code
int main()
{
    float a = 5, b = 4;
    cout << Area(a, b) << endl;
 
    return 0;
}

Java




// Java Program to find the biggest Reuleaux triangle
// inscribed within in a square which in turn
// is inscribed within an ellipse
import java.io.*;
 
class GFG
{
     
// Function to find the biggest reuleaux triangle
static float Area(float a, float b)
{
 
    // length of the axes cannot be negative
    if (a < 0 && b < 0)
        return -1;
 
    // height of the reuleaux triangle
    float h = (float)Math.sqrt(((Math.pow(a, 2) + Math.pow(b, 2))
                / (Math.pow(a, 2) * Math.pow(b, 2))));
 
    // area of the reuleaux triangle
    float A = (float)(0.70477 * Math.pow(h, 2));
 
    return A;
}
 
// Driver code
public static void main (String[] args)
{
    float a = 5, b = 4;
    System.out.println(Area(a, b));
}
}
 
// This code is contributed by anuj_67..

Python3




# Python3 Program to find the biggest Reuleaux
# triangle inscribed within in a square
# which in turn is inscribed within an ellipse
import math;
 
# Function to find the biggest
# reuleaux triangle
def Area(a, b):
 
    # length of the axes cannot
    # be negative
    if (a < 0 and b < 0):
        return -1;
 
    # height of the reuleaux triangle
    h = math.sqrt(((pow(a, 2) + pow(b, 2)) /
                   (pow(a, 2) * pow(b, 2))));
 
    # area of the reuleaux triangle
    A = 0.70477 * pow(h, 2);
 
    return A;
 
# Driver code
a = 5;
b = 4;
print(round(Area(a, b), 7));
 
# This code is contributed by chandan_jnu

C#




// C# Program to find the biggest Reuleaux triangle
// inscribed within in a square which in turn
// is inscribed within an ellipse
using System;
 
class GFG
{
     
// Function to find the biggest reuleaux triangle
static double Area(double a, double b)
{
 
    // length of the axes cannot be negative
    if (a < 0 && b < 0)
        return -1;
 
    // height of the reuleaux triangle
    double h = (double)Math.Sqrt(((Math.Pow(a, 2) +
                                    Math.Pow(b, 2)) /
                                   (Math.Pow(a, 2) *
                                   Math.Pow(b, 2))));
 
    // area of the reuleaux triangle
    double A = (double)(0.70477 * Math.Pow(h, 2));
 
    return A;
}
 
// Driver code
static void Main()
{
    double a = 5, b = 4;
    Console.WriteLine(Math.Round(Area(a, b),7));
}
}
 
// This code is contributed by chandan_jnu

PHP




<?php
// PHP Program to find the biggest Reuleaux
// triangle inscribed within in a square
// which in turn is inscribed within an ellipse
 
// Function to find the biggest
// reuleaux triangle
function Area($a, $b)
{
 
    // length of the axes cannot
    // be negative
    if ($a < 0 && $b < 0)
        return -1;
 
    // height of the reuleaux triangle
    $h = sqrt(((pow($a, 2) + pow($b, 2)) /
               (pow($a, 2) * pow($b, 2))));
 
    // area of the reuleaux triangle
    $A = 0.70477 * pow($h, 2);
 
    return $A;
}
 
// Driver code
$a = 5;
$b = 4;
echo round(Area($a, $b), 7);
 
// This code is contributed by Ryuga
?>

Javascript




<script>
 
// Javascript Program to find the biggest Reuleaux triangle
// inscribed within in a square which in turn
// is inscribed within an ellipse
 
// Function to find the biggest reuleaux triangle
function Area(a, b)
{
 
    // length of the axes cannot be negative
    if (a < 0 && b < 0)
        return -1;
 
    // height of the reuleaux triangle
    let h = Math.sqrt(((Math.pow(a, 2) + Math.pow(b, 2))
                    / (Math.pow(a, 2) * Math.pow(b, 2))));
 
    // area of the reuleaux triangle
    let A = 0.70477 * Math.pow(h, 2);
 
    return A;
}
 
// Driver code
    let a = 5, b = 4;
    document.write(Area(a, b) + "<br>");
     
// This code is contributed by Mayank Tyagi
 
</script>
Output: 
0.0722389

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :