# Biggest Reuleaux Triangle inscribed within a Square inscribed in an equilateral triangle

• Last Updated : 16 Mar, 2021

Given here is an equilateral triangle of sidelength a which inscribes a square which in turn inscribes a reuleaux triangle. The task is to find the maximum possible area of this reuleaux triangle.
Examples:

```Input : a = 5
Output : 3.79335

Input : a = 9
Output : 12.2905```

Hey! Looking for some great resources suitable for young ones? You've come to the right place. Check out our self-paced courses designed for students of grades I-XII

Start with topics like Python, HTML, ML, and learn to make some games and apps all with the help of our expertly designed content! So students worry no more, because GeeksforGeeks School is now here! Approach: We know that the side of the square inscribed within an equilateral triangle of side length is, x = 0.464*a (Please refer here).
Also, in the reuleaux triangle, h = x.
So, Area of Reuleaux Triangle

```A = 0.70477*h2
= 0.70477*(0.464*a)2```

Below is the implementation of the above approach:

## C++

 `// C++ Program to find the biggest Reuleaux triangle``// inscribed within in a square which in turn``// is inscribed within an equilateral triangle``#include ``using` `namespace` `std;` `// Function to find the biggest reuleaux triangle``float` `Area(``float` `a)``{` `    ``// side cannot be negative``    ``if` `(a < 0)``        ``return` `-1;` `    ``// height of the reuleaux triangle``    ``float` `x = 0.464 * a;` `    ``// area of the reuleaux triangle``    ``float` `A = 0.70477 * ``pow``(x, 2);` `    ``return` `A;``}` `// Driver code``int` `main()``{``    ``float` `a = 5;``    ``cout << Area(a) << endl;` `    ``return` `0;``}`

## Java

 `// Java Program to find the biggest Reuleaux triangle``// inscribed within in a square which in turn``// is inscribed within an equilateral triangle` `class` `GFG``{``    ` `// Function to find the biggest reuleaux triangle``static` `float` `Area(``float` `a)``{` `    ``// side cannot be negative``    ``if` `(a < ``0``)``        ``return` `-``1``;` `    ``// height of the reuleaux triangle``    ``float` `x = ``0``.464f * a;` `    ``// area of the reuleaux triangle``    ``float` `A = ``0``.70477f * (``float``)Math.pow(x, ``2``);` `    ``return` `A;``}` `// Driver code``public` `static` `void` `main (String[] args)``{``    ``float` `a = ``5``;``    ``System.out.println(String.format(``"%.5f"``, Area(a)));``}``}` `// This code is contributed by chandan_jnu`

## Python3

 `# Python3 Program to find the biggest``# Reuleaux triangle inscribed within``# in a square which in turn is inscribed``# within an equilateral triangle``import` `math as mt` `# Function to find the biggest``# reuleaux triangle``def` `Area(a):` `    ``# side cannot be negative``    ``if` `(a < ``0``):``        ``return` `-``1` `    ``# height of the reuleaux triangle``    ``x ``=` `0.464` `*` `a` `    ``# area of the reuleaux triangle``    ``A ``=` `0.70477` `*` `pow``(x, ``2``)` `    ``return` `A` `# Driver code``a ``=` `5``print``(Area(a))` `# This code is contributed by``# Mohit Kumar 29`

## C#

 `// C# Program to find the biggest Reuleaux``// triangle inscribed within in a square``// which in turn is inscribed within an``// equilateral triangle``using` `System;` `class` `GFG``{``    ` `// Function to find the biggest``// reuleaux triangle``static` `float` `Area(``float` `a)``{` `    ``// side cannot be negative``    ``if` `(a < 0)``        ``return` `-1;` `    ``// height of the reuleaux triangle``    ``float` `x = 0.464f * a;` `    ``// area of the reuleaux triangle``    ``float` `A = 0.70477f * (``float``)Math.Pow(x, 2);` `    ``return` `A;``}` `// Driver code``public` `static` `void` `Main ()``{``    ``float` `a = 5;``    ``Console.WriteLine(String.Format(``"{0,0:#.00000}"``,``                                          ``Area(a)));``}``}` `// This code is contributed by Akanksha Rai`

## PHP

 `

## Javascript

 ``
Output:
`3.79335`

My Personal Notes arrow_drop_up