# Beatty sequence

• Last Updated : 26 Oct, 2021

Beatty sequence (or homogeneous Beatty sequence) is the sequence of integers found by taking the floor of the positive multiples of a positive irrational number.
The Nth term of the Beatty sequence: ### Find the N terms of Beatty Sequence

Given an integer N, the task is to print the first N terms of the Beatty sequence.
Examples:

Input: N = 5
Output: 1, 2, 4, 5, 7
Input: N = 10
Output: 1, 2, 4, 5, 7, 8, 9, 11, 12,

Approach: The idea is to iterate from 1 to N using loop to find the term of the sequence. The term of the Beatty sequence is given by: Below is the implementation of the above approach:

## C++

 // C++ implementation of the// above approach #include using namespace std; // Function to print the first N terms// of the Beatty sequencevoid BeattySequence(int n){    for (int i = 1; i <= n; i++) {        double ans = floor(i * sqrt(2));        cout << ans << ", ";    }} // Driver codeint main(){    int n = 5;     BeattySequence(n);     return 0;}

## Java

 // Java implementation of the// above approachimport java.util.*;class GFG{ // Function to print the first N terms// of the Beatty sequencestatic void BeattySequence(int n){    for(int i = 1; i <= n; i++)    {        int ans = (int)Math.floor(i * Math.sqrt(2));        System.out.print(ans + ", ");    }} // Driver codepublic static void main(String args[]){    int n = 5;     BeattySequence(n);}} // This code is contributed by Code_Mech

## Python3

 # Python3 implementation of the# above approachimport math # Function to print the first N terms# of the Beatty sequencedef BeattySequence(n):    for i in range(1, n + 1):        ans = math.floor(i * math.sqrt(2))        print(ans, end = ', ') # Driver coden = 5BeattySequence(n) # This code is contributed by yatin

## C#

 // C# implementation of the// above approachusing System;class GFG{ // Function to print the first N terms// of the Beatty sequencestatic void BeattySequence(int n){    for(int i = 1; i <= n; i++)    {       double ans = Math.Floor(i * Math.Sqrt(2));       Console.Write(ans + ", ");    }} // Driver codepublic static void Main(){    int n = 5;     BeattySequence(n);}} // This code is contributed by Code_Mech

## Javascript

 
Output:
1, 2, 4, 5, 7,

Time Complexity: O(n1/2)

Auxiliary Space: O(1)

Reference: https://oeis.org/A001951

My Personal Notes arrow_drop_up