Basics of NumPy Arrays
NumPy stands for Numerical Python. It is a Python library used for working with an array. In Python, we use the list for purpose of the array but it’s slow to process. NumPy array is a powerful N-dimensional array object and its use in linear algebra, Fourier transform, and random number capabilities. It provides an array object much faster than traditional Python lists.
Types of Array:
- One Dimensional Array
- Multi-Dimensional Array
One Dimensional Array:
A one-dimensional array is a type of linear array.

One Dimensional Array
Example:
Python3
# importing numpy module import numpy as np # creating list list = [ 1 , 2 , 3 , 4 ] # creating numpy array sample_array = np.array(list1) print ( "List in python : " , list ) print ( "Numpy Array in python :" , sample_array) |
Output:
List in python : [1, 2, 3, 4] Numpy Array in python : [1 2 3 4]
Check data type for list and array:
Python3
print ( type (list_1)) print ( type (sample_array)) |
Output:
<class 'list'> <class 'numpy.ndarray'>
Multi-Dimensional Array:
Data in multidimensional arrays are stored in tabular form.

Two Dimensional Array
Example:
Python3
# importing numpy module import numpy as np # creating list list_1 = [ 1 , 2 , 3 , 4 ] list_2 = [ 5 , 6 , 7 , 8 ] list_3 = [ 9 , 10 , 11 , 12 ] # creating numpy array sample_array = np.array([list_1, list_2, list_3]) print ( "Numpy multi dimensional array in python\n" , sample_array) |
Output:
Numpy multi dimensional array in python [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]]
Note: use [ ] operators inside numpy.array() for multi-dimensional
Anatomy of an array :
1. Axis: The Axis of an array describes the order of the indexing into the array.
Axis 0 = one dimensional
Axis 1 = Two dimensional
Axis 2 = Three dimensional
2. Shape: The number of elements along with each axis. It is from a tuple.
Example:
Python3
# importing numpy module import numpy as np # creating list list_1 = [ 1 , 2 , 3 , 4 ] list_2 = [ 5 , 6 , 7 , 8 ] list_3 = [ 9 , 10 , 11 , 12 ] # creating numpy array sample_array = np.array([list_1, list_2, list_3]) print ( "Numpy array :" ) print (sample_array) # print shape of the array print ( "Shape of the array :" , sample_array.shape) |
Output:
Numpy array : [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] Shape of the array : (3, 4)
Example:
Python3
import numpy as np sample_array = np.array([[ 0 , 4 , 2 ], [ 3 , 4 , 5 ], [ 23 , 4 , 5 ], [ 2 , 34 , 5 ], [ 5 , 6 , 7 ]]) print ( "shape of the array :" , sample_array.shape) |
Output:
shape of the array : (5, 3)
3. Rank: The rank of an array is simply the number of axes (or dimensions) it has.
The one-dimensional array has rank 1.

Rank 1
The two-dimensional array has rank 2.

Rank 2
4. Data type objects (dtype): Data type objects (dtype) is an instance of numpy.dtype class. It describes how the bytes in the fixed-size block of memory corresponding to an array item should be interpreted.
Example:
Python3
# Import module import numpy as np # Creating the array sample_array_1 = np.array([[ 0 , 4 , 2 ]]) sample_array_2 = np.array([ 0.2 , 0.4 , 2.4 ]) # display data type print ( "Data type of the array 1 :" , sample_array_1.dtype) print ( "Data type of array 2 :" , sample_array_2.dtype) |
Output:
Data type of the array 1 : int32 Data type of array 2 : float64
Some different way of creating Numpy Array :
1. numpy.array(): The Numpy array object in Numpy is called ndarray. We can create ndarray using numpy.array() function.
Syntax: numpy.array(parameter)
Example:
Python3
# import module import numpy as np #creating a array arr = np.array([ 3 , 4 , 5 , 5 ]) print ( "Array :" ,arr) |
Output:
Array : [3 4 5 5]
2. numpy.fromiter(): The fromiter() function create a new one-dimensional array from an iterable object.
Syntax: numpy.fromiter(iterable, dtype, count=-1)
Example 1:
Python3
#Import numpy module import numpy as np # iterable iterable = (a * a for a in range ( 8 )) arr = np.fromiter(iterable, float ) print ( "fromiter() array :" ,arr) |
Output:
fromiter() array : [ 0. 1. 4. 9. 16. 25. 36. 49.]
Example 2:
Python3
import numpy as np var = "Geekforgeeks" arr = np.fromiter(var, dtype = 'U2' ) print ( "fromiter() array :" , arr) |
Output:
fromiter() array : [‘G’ ‘e’ ‘e’ ‘k’ ‘f’ ‘o’ ‘r’ ‘g’ ‘e’ ‘e’ ‘k’ ‘s’]
3. numpy.arange(): This is an inbuilt NumPy function that returns evenly spaced values within a given interval.
Syntax: numpy.arange([start, ]stop, [step, ]dtype=None)
Example:
Python3
import numpy as np np.arange( 1 , 20 , 2 , dtype = np.float32) |
Output:
array([ 1., 3., 5., 7., 9., 11., 13., 15., 17., 19.], dtype=float32)
4. numpy.linspace(): This function returns evenly spaced numbers over a specified between two limits.
Syntax: numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
Example 1:
Python3
import numpy as np np.linspace( 3.5 , 10 , 3 ) |
Output:
array([ 3.5 , 6.75, 10. ])
Example 2:
Python3
import numpy as np np.linspace( 3.5 , 10 , 3 , dtype = np.int32) |
Output:
array([ 3, 6, 10])
5. numpy.empty(): This function create a new array of given shape and type, without initializing value.
Syntax: numpy.empty(shape, dtype=float, order=’C’)
Example:
Python3
import numpy as np np.empty([ 4 , 3 ], dtype = np.int32, order = 'f' ) |
Output:
array([[ 1, 5, 9], [ 2, 6, 10], [ 3, 7, 11], [ 4, 8, 12]])
6. numpy.ones(): This function is used to get a new array of given shape and type, filled with ones(1).
Syntax: numpy.ones(shape, dtype=None, order=’C’)
Example:
Python3
import numpy as np np.ones([ 4 , 3 ], dtype = np.int32, order = 'f' ) |
Output:
array([[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]])
7. numpy.zeros(): This function is used to get a new array of given shape and type, filled with zeros(0).
Syntax: numpy.ones(shape, dtype=None)
Example:
Python3
import numpy as np np.zeros([ 4 , 3 ], dtype = np.int32, order = 'f' ) |
Output:
array([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]])
Please Login to comment...