# A backtracking approach to generate n bit Gray Codes

Given a number n, the task is to generate n bit Gray codes (generate bit patterns from 0 to 2^n-1 such that successive patterns differ by one bit)

Examples:

```Input : 2
Output : 0 1 3 2
Explanation :
00 - 0
01 - 1
11 - 3
10 - 2

Input : 3
Output : 0 1 3 2 6 7 5 4
```

We have discussed an approach in Generate n-bit Gray Codes
This article provides a backtracking approach to the same problem. Idea is that for each bit out of n bit we have a choice either we can ignore it or we can invert the bit so this means our gray sequence goes upto 2 ^ n for n bits. So we make two recursive calls for either inverting the bit or leaving the bit as it is.

## C++

 `// CPP program to find the gray sequence of n bits.` `#include ` `#include ` `using` `namespace` `std;`   `/* we have 2 choices for each of the n bits either we ` `   ``can include i.e invert the bit or we can exclude the ` `   ``bit i.e we can leave the number as it is. */` `void` `grayCodeUtil(vector<``int``>& res, ``int` `n, ``int``& num)` `{` `    ``// base case when we run out bits to process` `    ``// we simply include it in gray code sequence.` `    ``if` `(n == 0) {` `        ``res.push_back(num);` `        ``return``;` `    ``}`   `    ``// ignore the bit.` `    ``grayCodeUtil(res, n - 1, num);`   `    ``// invert the bit.` `    ``num = num ^ (1 << (n - 1));` `    ``grayCodeUtil(res, n - 1, num);` `}`   `// returns the vector containing the gray ` `// code sequence of n bits.` `vector<``int``> grayCodes(``int` `n)` `{` `    ``vector<``int``> res;`   `    ``// num is passed by reference to keep` `    ``// track of current code.` `    ``int` `num = 0;` `    ``grayCodeUtil(res, n, num);`   `    ``return` `res;` `}`   `// Driver function.` `int` `main()` `{` `    ``int` `n = 3;` `    ``vector<``int``> code = grayCodes(n);` `    ``for` `(``int` `i = 0; i < code.size(); i++) ` `        ``cout << code[i] << endl;    ` `    ``return` `0;` `}`

## Java

 `// JAVA program to find the gray sequence of n bits.` `import` `java.util.*;`   `class` `GFG` `{`   `static` `int` `num;`   `/* we have 2 choices for each of the n bits either we ` `can include i.e invert the bit or we can exclude the ` `bit i.e we can leave the number as it is. */` `static` `void` `grayCodeUtil(Vector res, ``int` `n)` `{` `    ``// base case when we run out bits to process` `    ``// we simply include it in gray code sequence.` `    ``if` `(n == ``0``)` `    ``{` `        ``res.add(num);` `        ``return``;` `    ``}`   `    ``// ignore the bit.` `    ``grayCodeUtil(res, n - ``1``);`   `    ``// invert the bit.` `    ``num = num ^ (``1` `<< (n - ``1``));` `    ``grayCodeUtil(res, n - ``1``);` `}`   `// returns the vector containing the gray ` `// code sequence of n bits.` `static` `Vector grayCodes(``int` `n)` `{` `    ``Vector res = ``new` `Vector();`   `    ``// num is passed by reference to keep` `    ``// track of current code.` `    ``num = ``0``;` `    ``grayCodeUtil(res, n);`   `    ``return` `res;` `}`   `// Driver function.` `public` `static` `void` `main(String[] args)` `{` `    ``int` `n = ``3``;` `    ``Vector code = grayCodes(n);` `    ``for` `(``int` `i = ``0``; i < code.size(); i++) ` `        ``System.out.print(code.get(i) +``"\n"``); ` `}` `}`   `// This code is contributed by Rajput-Ji`

## Python3

 `# Python3 program to find the ` `# gray sequence of n bits. `   `""" we have 2 choices for each of the n bits ` `either we can include i.e invert the bit or ` `we can exclude the bit i.e we can leave ` `the number as it is. """` `def` `grayCodeUtil(res, n, num):` `    `  `    ``# base case when we run out bits to process` `    ``# we simply include it in gray code sequence. ` `    ``if` `(n ``=``=` `0``):` `        ``res.append(num[``0``])` `        ``return` `        `  `    ``# ignore the bit.` `    ``grayCodeUtil(res, n ``-` `1``, num)` `    `  `    ``# invert the bit. ` `    ``num[``0``] ``=` `num[``0``] ^ (``1` `<< (n ``-` `1``)) ` `    ``grayCodeUtil(res, n ``-` `1``, num) ` `    `  `# returns the vector containing the gray` `# code sequence of n bits. ` `def` `grayCodes(n):` `    ``res ``=` `[]` `    `  `    ``# num is passed by reference to keep ` `    ``# track of current code. ` `    ``num ``=` `[``0``]` `    ``grayCodeUtil(res, n, num) ` `    ``return` `res `   `# Driver Code` `n ``=` `3` `code ``=` `grayCodes(n) ` `for` `i ``in` `range``(``len``(code)):` `    ``print``(code[i])`   `# This code is contributed by SHUBHAMSINGH10`

## C#

 `// C# program to find the gray sequence of n bits.` `using` `System;` `using` `System.Collections.Generic;`   `class` `GFG` `{`   `static` `int` `num;`   `/* we have 2 choices for each of the n bits either we ` `can include i.e invert the bit or we can exclude the ` `bit i.e we can leave the number as it is. */` `static` `void` `grayCodeUtil(List<``int``> res, ``int` `n)` `{` `    ``// base case when we run out bits to process` `    ``// we simply include it in gray code sequence.` `    ``if` `(n == 0)` `    ``{` `        ``res.Add(num);` `        ``return``;` `    ``}`   `    ``// ignore the bit.` `    ``grayCodeUtil(res, n - 1);`   `    ``// invert the bit.` `    ``num = num ^ (1 << (n - 1));` `    ``grayCodeUtil(res, n - 1);` `}`   `// returns the vector containing the gray ` `// code sequence of n bits.` `static` `List<``int``> grayCodes(``int` `n)` `{` `    ``List<``int``> res = ``new` `List<``int``>();`   `    ``// num is passed by reference to keep` `    ``// track of current code.` `    ``num = 0;` `    ``grayCodeUtil(res, n);`   `    ``return` `res;` `}`   `// Driver function.` `public` `static` `void` `Main(String[] args)` `{` `    ``int` `n = 3;` `    ``List<``int``> code = grayCodes(n);` `    ``for` `(``int` `i = 0; i < code.Count; i++) ` `        ``Console.Write(code[i] +``"\n"``); ` `}` `}`   `// This code is contributed by 29AjayKumar`

## Javascript

 ``

Output:

```0
1
3
2
6
7
5
4```

Time Complexity: O(n)
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next