Given a number n, the task is to generate n bit Gray codes (generate bit patterns from 0 to 2^n-1 such that successive patterns differ by one bit)
Examples:
Input : 2
Output : 0 1 3 2
Explanation :
00 - 0
01 - 1
11 - 3
10 - 2
Input : 3
Output : 0 1 3 2 6 7 5 4
We have discussed an approach in Generate n-bit Gray Codes
This article provides a backtracking approach to the same problem. Idea is that for each bit out of n bit we have a choice either we can ignore it or we can invert the bit so this means our gray sequence goes upto 2 ^ n for n bits. So we make two recursive calls for either inverting the bit or leaving the bit as it is.
C++
#include <iostream>
#include <vector>
using namespace std;
void grayCodeUtil(vector< int >& res, int n, int & num)
{
if (n == 0) {
res.push_back(num);
return ;
}
grayCodeUtil(res, n - 1, num);
num = num ^ (1 << (n - 1));
grayCodeUtil(res, n - 1, num);
}
vector< int > grayCodes( int n)
{
vector< int > res;
int num = 0;
grayCodeUtil(res, n, num);
return res;
}
int main()
{
int n = 3;
vector< int > code = grayCodes(n);
for ( int i = 0; i < code.size(); i++)
cout << code[i] << endl;
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int num;
static void grayCodeUtil(Vector<Integer> res, int n)
{
if (n == 0 )
{
res.add(num);
return ;
}
grayCodeUtil(res, n - 1 );
num = num ^ ( 1 << (n - 1 ));
grayCodeUtil(res, n - 1 );
}
static Vector<Integer> grayCodes( int n)
{
Vector<Integer> res = new Vector<Integer>();
num = 0 ;
grayCodeUtil(res, n);
return res;
}
public static void main(String[] args)
{
int n = 3 ;
Vector<Integer> code = grayCodes(n);
for ( int i = 0 ; i < code.size(); i++)
System.out.print(code.get(i) + "\n" );
}
}
|
Python3
def grayCodeUtil(res, n, num):
if (n = = 0 ):
res.append(num[ 0 ])
return
grayCodeUtil(res, n - 1 , num)
num[ 0 ] = num[ 0 ] ^ ( 1 << (n - 1 ))
grayCodeUtil(res, n - 1 , num)
def grayCodes(n):
res = []
num = [ 0 ]
grayCodeUtil(res, n, num)
return res
n = 3
code = grayCodes(n)
for i in range ( len (code)):
print (code[i])
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int num;
static void grayCodeUtil(List< int > res, int n)
{
if (n == 0)
{
res.Add(num);
return ;
}
grayCodeUtil(res, n - 1);
num = num ^ (1 << (n - 1));
grayCodeUtil(res, n - 1);
}
static List< int > grayCodes( int n)
{
List< int > res = new List< int >();
num = 0;
grayCodeUtil(res, n);
return res;
}
public static void Main(String[] args)
{
int n = 3;
List< int > code = grayCodes(n);
for ( int i = 0; i < code.Count; i++)
Console.Write(code[i] + "\n" );
}
}
|
Javascript
<script>
function grayCodeUtil(res, n, num)
{
if (n == 0)
{
res.push(num[0]);
return ;
}
grayCodeUtil(res, n - 1, num);
num[0] = num[0] ^ (1 << (n - 1));
grayCodeUtil(res, n - 1, num);
}
function grayCodes(n)
{
let res = [];
let num = [0];
grayCodeUtil(res, n, num);
return res;
}
let n = 3;
let code = grayCodes(n);
for (let i = 0; i < code.length; i++)
document.write(code[i] + "<br>" );
</script>
|
Output:
0
1
3
2
6
7
5
4
Time Complexity: O(n)
Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
15 Jun, 2022
Like Article
Save Article