Arrange the array such that upon performing given operations an increasing order is obtained

Given an array arr[] of size N, the task is to print the arrangement of the array such that upon performing following operations on this arrangement, an increasing order is obtained as the output:

  1. Take the first (0th index) element, remove it from the array and print it.
  2. If there are still elements left in the array, move the next top element to the end of the array.
  3. Repeat the above steps until array is not empty.

Examples:

Input: arr = {1, 2, 3, 4, 5, 6, 7, 8}
Output: {1, 5, 2, 7, 3, 6, 4, 8}
Explanation:
Let initial array be {1, 5, 2, 7, 3, 6, 4, 8}, where 1 is the top of the array.
1 is printed, and 5 is moved to the end. The array is now {2, 7, 3, 6, 4, 8, 5}.
2 is printed, and 7 is moved to the end. The array is now {3, 6, 4, 8, 5, 7}.
3 is printed, and 6 is moved to the end. The array is now {4, 8, 5, 7, 6}.
4 is printed, and 8 is moved to the end. The array is now {5, 7, 6, 8}.
5 is printed, and 7 is moved to the end. The array is now {6, 8, 7}.
6 is printed, and 8 is moved to the end. The array is now {7, 8}.
7 is printed, and 8 is moved to the end. The array is now {8}.
8 is printed.
The printing order is 1, 2, 3, 4, 5, 6, 7, 8 which is increasing.



Input: arr = {3, 2, 25, 2, 3, 1, 2, 6, 5, 45, 4, 89, 5}
Output: {1, 45, 2, 5, 2, 25, 2, 5, 3, 89, 3, 6, 4}

Approach:
The idea is to simulate the given process. For this a queue data structure is used.

  1. The given array is sorted and the queue is prepared by adding array indexes.
  2. Then the given array is traversed and for each element, the index from the front of the queue is popped and add the current array element is added at the popped index in the resultant array.
  3. If the queue is still not empty, then the next index (in the queue front) is moved to the back of the queue.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <bits/stdc++.h>
#define mod 1000000007
using namespace std;
  
// Function to print the arrangement
vector<int> arrangement(vector<int> arr)
{
    // Sorting the list
    sort(arr.begin(),arr.end());
  
    //Finding Length of the List
    int length = arr.size();
  
    // Initializing the result array
    vector<int> ans(length,0);
  
    // Initializing the Queue
    deque <int> Q;
    for (int i = 0; i < length; i++)
        Q.push_back(i);
          
    // Adding current array element to the
    // result at an index which is at the
    // front of the Q and then if still
    // elements are left then putting the next
    // top element the bottom of the array.
    for (int i = 0; i < length; i++)
    {
        int j = Q.front();
        Q.pop_front();
        ans[j] = arr[i];
          
        if(Q.size() != 0)
        {
            j = Q.front();
            Q.pop_front();
            Q.push_back(j);
        }
  
        }
    return ans;
}
  
// Driver code
int main()
{
    vector<int> arr = {1, 2, 3, 4, 5, 6, 7, 8};
      
    vector<int> answer = arrangement(arr);
      
    for(int i:answer) cout << i << " ";
}
  
// This code is contributed by mohit kumar 29

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
  
import java.util.*;
  
public class GfG {
  
    // Function to find the array
    // arrangement
    static public int[] arrayIncreasing(int[] arr)
    {
  
        // Sorting the array
        Arrays.sort(arr);
  
        // Finding size of array
        int length = arr.length;
  
        // Empty array to store resultant order
        int answer[] = new int[length];
  
        // Doubly Ended Queue to
        // simulate the process
        Deque<Integer> dq = new LinkedList<>();
  
        // Loop to initialize queue with indexes
        for (int i = 0; i < length; i++) {
            dq.add(i);
        }
  
        // Adding current array element to the
        // result at an index which is at the
        // front of the queue and then if still
        // elements are left then putting the next
        // top element the bottom of the array.
        for (int i = 0; i < length; i++) {
  
            answer[dq.pollFirst()] = arr[i];
  
            if (!dq.isEmpty())
                dq.addLast(dq.pollFirst());
        }
  
        // Returning the resultant order
        return answer;
    }
  
    // Driver code
    public static void main(String args[])
    {
        int A[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
  
        // Calling the function
        int ans[] = arrayIncreasing(A);
  
        // Printing the obtained pattern
        for (int i = 0; i < A.length; i++)
            System.out.print(ans[i] + " ");
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Code for the approach
  
# Importing Queue from Collections Module
from collections import deque
  
# Function to print the arrangement
def arrangement(arr):
    # Sorting the list
    arr.sort()
      
    # Finding Length of the List
    length = len(arr)
      
    # Initializing the result array
    answer = [0 for x in range(len(arr))]
      
    # Initializing the Queue
    queue = deque()
    for i in range(length):
        queue.append(i)
      
    # Adding current array element to the
    # result at an index which is at the
    # front of the queue and then if still
    # elements are left then putting the next
    # top element the bottom of the array.
    for i in range(length):
      
        answer[queue.popleft()] = arr[i]
      
        if len(queue) != 0:
            queue.append(queue.popleft())
    return answer
  
# Driver code
arr = [1, 2, 3, 4, 5, 6, 7, 8]
answer = arrangement(arr)
# Printing the obtained result
print(*answer, sep = ' ')

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
using System.Collections.Generic;
  
class GfG
{
  
    // Function to find the array
    // arrangement
    static public int[] arrayIncreasing(int[] arr)
    {
  
        // Sorting the array
        Array.Sort(arr);
  
        // Finding size of array
        int length = arr.Length;
  
        // Empty array to store resultant order
        int []answer = new int[length];
  
        // Doubly Ended Queue to
        // simulate the process
        List<int> dq = new List<int>();
  
        // Loop to initialize queue with indexes
        for (int i = 0; i < length; i++)
        {
            dq.Add(i);
        }
  
        // Adding current array element to the
        // result at an index which is at the
        // front of the queue and then if still
        // elements are left then putting the next
        // top element the bottom of the array.
        for (int i = 0; i < length; i++)
        {
  
            answer[dq[0]] = arr[i];
            dq.RemoveAt(0);
            if (dq.Count != 0)
            {
                dq.Add(dq[0]);
                dq.RemoveAt(0);
            }
        }
  
        // Returning the resultant order
        return answer;
    }
  
    // Driver code
    public static void Main(String []args)
    {
        int []A = { 1, 2, 3, 4, 5, 6, 7, 8 };
  
        // Calling the function
        int []ans = arrayIncreasing(A);
  
        // Printing the obtained pattern
        for (int i = 0; i < A.Length; i++)
            Console.Write(ans[i] + " ");
    }
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

1 5 2 7 3 6 4 8

Time Complexity: O(NlogN)




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.