Skip to content
Related Articles

Related Articles

Improve Article
Area of the Largest Triangle inscribed in a Hexagon
  • Last Updated : 10 Mar, 2021

Given here is a regular hexagon, of side length a, the task is to find the area of the biggest triangle that can be inscribed within it.
Examples: 
 

Input:  a = 6
Output: area = 46.7654

Input: a = 8
Output: area = 83.1384

 

 

Approach:
 



It is very clear that the biggest triangle that can be inscribed within the hexagon is an equilateral triangle. 
In triangle ACD
following pythagorus theorem, 
(a/2)^2 + (b/2)^2 = a^2 
b^2/4 = 3a^2/4 
So, b = a√3 
Therefore, area of the triangle, A = √3(a√3)^2/4= 3√3a^2/4

Below is the implementation of the above approach:
 

C++




// C++ Program to find the biggest triangle
// which can be inscribed within the hexagon
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of the triangle
float trianglearea(float a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the triangle
    float area = (3 * sqrt(3) * pow(a, 2)) / 4;
 
    return area;
}
 
// Driver code
int main()
{
    float a = 6;
    cout << trianglearea(a) << endl;
 
    return 0;
}

Java




// Java Program to find the biggest triangle
// which can be inscribed within the hexagon
 
import java.io.*;
 
class GFG {
     
// Function to find the area
// of the triangle
static double trianglearea(double a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the triangle
    double area = (3 * Math.sqrt(3) * Math.pow(a, 2)) / 4;
 
    return area;
}
 
    public static void main (String[] args) {
        double a = 6;
        System.out.println (trianglearea(a));
 
    }
//This Code is contributed by Sachin..
     
}

Python3




# Python3 Program to find the biggest triangle
# which can be inscribed within the hexagon
import math
 
# Function to find the area
# of the triangle
def trianglearea(a):
 
    # side cannot be negative
    if (a < 0):
        return -1;
 
    # area of the triangle
    area = (3 * math.sqrt(3) * math.pow(a, 2)) / 4;
 
    return area;
 
# Driver code
a = 6;
print(trianglearea(a))
 
# This code is contributed
# by Akanksha Rai

C#




// C# Program to find the biggest triangle
// which can be inscribed within the hexagon
 
using System;
 
class GFG {
     
// Function to find the area
// of the triangle
static double trianglearea(double a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the triangle
    double area = (3 * Math.Sqrt(3) * Math.Pow(a, 2)) / 4;
 
    return Math.Round(area,4);
}
 
    public static void Main () {
        double a = 6;
        Console.WriteLine(trianglearea(a));
 
    }
        // This code is contributed by Ryuga
 
}

PHP




<?php
// PHP Program to find the biggest triangle
// which can be inscribed within the hexagon
 
// Function to find the area
// of the triangle
function trianglearea($a)
{
 
    // side cannot be negative
    if ($a < 0)
        return -1;
 
    // area of the triangle
    $area = (3 * sqrt(3) *
                 pow($a, 2)) / 4;
 
    return $area;
}
 
// Driver code
$a = 6;
echo trianglearea($a);
 
// This code is contributed
// by inder_verma
?>

Javascript




<script>
// javascript Program to find the biggest triangle
// which can be inscribed within the hexagon
 
   
// Function to find the area
// of the triangle
function trianglearea(a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the triangle
    var area = (3 * Math.sqrt(3) * Math.pow(a, 2)) / 4;
 
    return area.toFixed(4);
}
 
var a = 6;
document.write(trianglearea(a));
 
// This code contributed by Princi Singh
 
</script>
Output: 
46.7654

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :