Area of largest Circle that can be inscribed in a SemiCircle

Given a semicircle with radius R, the task is to find the area of the largest circle that can be inscribed in the semicircle.

Examples:

Input: R = 2
Output: 3.14

Input: R = 8
Output: 50.24

Approach: Let R be the radius of the semicircle

  1. For Largest circle that can be inscribed in this semicircle, the diameter of the circle must be equal to the radius of the semi-circle.
  2. So, if the radius of the semi-circle is R, then the diameter of the largest inscribed circle will be R.
  3. Hence the radius of the inscribed circle must be R/2
  4. Therefore the area of the largest circle will be
    Area of circle = pi*Radius2
                   = pi*(R/2)2
    
    since the radius of largest circle is R/2
    where R is the radius of the semicircle
    

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find the biggest circle
// which can be inscribed within the semicircle
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the area
// of the circle
float circlearea(float R)
{
  
    // Radius cannot be negative
    if (R < 0)
        return -1;
  
    // Area of the largest circle
    float a = 3.14 * R * R / 4;
  
    return a;
}
  
// Driver code
int main()
{
    float R = 2;
    cout << circlearea(R) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find the biggest circle
// which can be inscribed within the semicircle
class GFG 
{
      
    // Function to find the area
    // of the circle
    static float circlearea(float R)
    {
      
        // Radius cannot be negative
        if (R < 0)
            return -1;
      
        // Area of the largest circle
        float a = (float)((3.14 * R * R) / 4);
      
        return a;
    }
      
    // Driver code
    public static void main (String[] args) 
    {
        float R = 2;
        System.out.println(circlearea(R));
    }
}
  
// This code is contributed by AnkitRai01

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to find the biggest circle
# which can be inscribed within the semicircle
  
# Function to find the area
# of the circle
def circlearea(R) :
  
    # Radius cannot be negative
    if (R < 0) :
        return -1;
  
    # Area of the largest circle
    a = (3.14 * R * R) / 4;
  
    return a;
  
# Driver code
if __name__ == "__main__" :
  
    R = 2;
    print(circlearea(R)) ;
      
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find the biggest circle
// which can be inscribed within the semicircle
using System;
  
class GFG 
{
      
    // Function to find the area
    // of the circle
    static float circlearea(float R)
    {
      
        // Radius cannot be negative
        if (R < 0)
            return -1;
      
        // Area of the largest circle
        float a = (float)((3.14 * R * R) / 4);
      
        return a;
    }
      
    // Driver code
    public static void Main (string[] args) 
    {
        float R = 2;
        Console.WriteLine(circlearea(R));
    }
}
  
// This code is contributed by AnkitRai01

chevron_right


Output:

3.14

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01