Related Articles

Related Articles

Area of circle inscribed within rhombus
  • Last Updated : 15 Oct, 2018

Given a rhombus with diagonals a and b, which contains an inscribed circle. The task is to find the area of that circle in terms of a and b.

Examples:

Input: l = 5, b = 6
Output: 11.582

Input: l = 8, b = 10
Output: 30.6341

Approach: From the figure, we see, the radius of inscribed circle is also a height h=OH of the right triangle AOB. To find it, we use equations for triangle’s area :

Area AOB = 1/2 * (a/2) * (b/2) = ab/8 = 12ch



where c = AB i.e. a hypotenuse. So,

r = h = ab/4c = ab/4√(a^2/4 + b^2/4) = ab/2√(a^2+b^2)

and therefore area of the circle is

A = Π * r^2 = Π a^2 b^2 /4(a2 + b2)

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find the area of the circle
// which can be inscribed within the rhombus
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the area
// of the inscribed circle
float circlearea(float a, float b)
{
  
    // the diagonals cannot be negative
    if (a < 0 || b < 0)
        return -1;
  
    // area of the circle
    float A = (3.14 * pow(a, 2) * pow(b, 2))
            / (4 * (pow(a, 2) + pow(b, 2)));
    return A;
}
  
// Driver code
int main()
{
    float a = 8, b = 10;
    cout << circlearea(a, b) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find the area of the circle 
// which can be inscribed within the rhombus 
  
public class GFG {
      
    // Function to find the area 
    // of the inscribed circle 
    public static float circlearea(double a, double b)
    {
        // the diagonals cannot be negative
        if (a < 0 || b < 0)
            return -1 ;
          
        //area of the circle 
        float A = (float) ((3.14 * Math.pow(a, 2) * Math.pow(b, 2)) 
                        / (4 * (Math.pow(a, 2) + Math.pow(b, 2)))) ;
          
        return A ;
    }
  
    // Driver code
    public static void main(String[] args) {
        float a = 8, b = 10 ;
          
        System.out.println(circlearea(a, b));
  
    }
// This code is contributed by ANKITRAI1
}

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 Program to find the area of the circle
# which can be inscribed within the rhombus
  
  
# Function to find the area
# of the inscribed circle
def circlearea(a, b):
  
    # the diagonals cannot be negative
    if (a < 0 or b < 0):
        return -1
  
    # area of the circle
    A = ((3.14 * pow(a, 2) * pow(b, 2))/
        (4 * (pow(a, 2) + pow(b, 2))))
    return A
  
# Driver code
if __name__ == "__main__":
    a = 8
    b = 10
    print( circlearea(a, b))
  
# This code is contributed by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find the area of the circle 
// which can be inscribed within the rhombus
using System;
  
public class GFG {
      
    // Function to find the area 
    // of the inscribed circle 
    public static float circlearea(double a, double b)
    {
        // the diagonals cannot be negative
        if (a < 0 || b < 0)
            return -1 ;
          
        //area of the circle 
        float A = (float) ((3.14 * Math.Pow(a, 2) * Math.Pow(b, 2)) 
                        / (4 * (Math.Pow(a, 2) + Math.Pow(b, 2)))) ;
          
        return A ;
    }
  
    // Driver code
    public static void Main() {
        float a = 8, b = 10 ;
          
        Console.WriteLine(circlearea(a, b));
  
    }
// This code is contributed by inder_verma..
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find the area 
// of the circle which can be 
// inscribed within the rhombus
  
// Function to find the area
// of the inscribed circle
function circlearea($a, $b)
{
  
    // the diagonals cannot be negative
    if ($a < 0 || $b < 0)
        return -1;
  
    // area of the circle
    $A = (3.14 * pow($a, 2) * pow($b, 2)) /
           (4 * (pow($a, 2) + pow($b, 2)));
    return $A;
}
  
// Driver code
$a = 8; $b = 10;
echo circlearea($a, $b);
  
// This code is contributed by anuj_67
?>

chevron_right


Output:

30.6341

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :