# Area of circle inscribed in a Isosceles Trapezoid

Given two bases of the isoceles trapezoid ABCD as a and b, the task is to find the area of circle inscribed in this trapezoid Examples:

```Input: a = 10, b = 30
Output: Area = 235.57

Input: a = 20, b = 36
Output: Area = 565.38
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Derivation: Given a circle inscribed in trapezium ABCD (sides AB = n and CD = m), we need to find out the height of the trapezium i.e., (AL), which is half of the radius of the circle to find the area of the circle. For finding the height of circle we do following operation.

1. The circle will always touch the sides of trapezium at their midpoints, Say the midpoints of AB, BD, CD, AC are G, F, H, E and join them with the centre of the circle.
2. Now from Symmetry, we can see that
```AG = AE = n/2,
EC = CG = m/2,
HD = DF = n/2,
GB = FB = m/2
```
3. Now in Triangle ACL apply the Pythagoras theorem.
```Hypotenuse AC = m/2 + n/2
Base CL = CH - AG = m/2 - n/2

we get
Perpendicular AL = Square_root(m * n)
```
4. Therfore the height of the Trapezium = AL = Square_Root(Product of given sides)
5. Now the radius of the circle is simple half of the height and hence the area can be calculated easily.

Appriach:

1. Find the height of the trapezoid as (square_root( m * n )).
2. Find the radius of the incircle
```R = height / 2
= square_root(m * n) / 2
```
3. Now find the area of the circle
```= Pi * R2
= ( 3.141 * m * n ) / 4
```

Below is the implementation of the above approach:

## C++

 `// CPP implementation to find ` `// the rea of the circle ` `// inscribed in a trapezoid ` `// having non- parllel sides m, n ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find area of circle ` `// inscribed in a trapezoid ` `// having non- parllel sides m, n ` `double` `area_of_circle(``int` `m, ``int` `n) ` `{ ` `    ``// radius of circle by the ` `    ``// formula i.e. root( m * n) / 2 ` `    ``// area of circle = (3.141 ) * ( R ** 2 ) ` ` `  `    ``int` `square_of_radius = ( m * n ) / 4; ` `    ``double` `area = ( 3.141 * square_of_radius ); ` `    ``return` `area; ` `} ` ` `  `// Driver Code ` `int` `main(){ ` `    ``int` `n = 10; ` `    ``int` `m = 30; ` `    ``cout << (area_of_circle(m, n)); ` `} ` ` `  `// This code is contributed by mohit kumar 29 `

## Java

 `// Java Program to find  ` `// the rea of the circle  ` `// inscribed in a trapezoid  ` `// having non- parllel sides m, n  ` `class` `GFG  ` `{  ` `     `  `    ``// Function to find area of circle  ` `    ``// inscribed in a trapezoid  ` `    ``// having non- parllel sides m, n  ` `    ``static` `double` `area_of_circle(``int` `m, ``int` `n)  ` `    ``{  ` `        ``// radius of circle by the  ` `        ``// formula i.e. root( m * n) / 2  ` `        ``// area of circle = (3.141 ) * ( R ** 2 )  ` `     `  `        ``int` `square_of_radius = ( m * n ) / ``4``;  ` `        ``double` `area = ( ``3.141` `* square_of_radius );  ` `        ``return` `area;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{  ` `        ``int` `n = ``10``;  ` `        ``int` `m = ``30``;  ` `        ``System.out.println(area_of_circle(m, n));  ` `    ``}  ` `}  ` ` `  `// This code is contributed by Yash_R `

## Python3

 `# Python 3 implementation to find  ` `# the rea of the circle  ` `# inscribed in a trapezoid ` `# having non- parllel sides  m, n ` ` `  ` `  `# Function to find area of circle  ` `# inscribed in a trapezoid ` `# having non- parllel sides  m, n ` `def` `area_of_circle(m, n): ` `    ``# radius of circle by the ` `    ``# formula i.e. root( m * n) / 2 ` `    ``# area of circle = (3.141 ) * ( R ** 2 ) ` `     `  `    ``square_of_radius ``=` `( m ``*` `n ) ``/` `4` `    ``area ``=` `( ``3.141` `*` `square_of_radius ) ` `    ``return` `area ` ` `  `# Driver Code  ` `if` `__name__``=``=``'__main__'``:  ` `    ``n ``=` `10` `    ``m ``=` `30` `    ``print``(area_of_circle(m, n)) `

## C#

 `// C# Program to find  ` `// the rea of the circle  ` `// inscribed in a trapezoid  ` `// having non- parllel sides m, n  ` `using` `System;  ` ` `  `class` `GFG  ` `{  ` `     `  `// Function to find area of circle  ` `// inscribed in a trapezoid  ` `// having non- parllel sides m, n  ` `static` `double` `area_of_circle(``int` `m, ``int` `n)  ` `{  ` `    ``// radius of circle by the  ` `    ``// formula i.e. root( m * n) / 2  ` `    ``// area of circle = (3.141 ) * ( R ** 2 )  ` ` `  `    ``int` `square_of_radius = ( m * n ) / 4;  ` `    ``double` `area = ( 3.141 * square_of_radius );  ` `    ``return` `area;  ` `}  ` ` `  `// Driver code  ` `public` `static` `void` `Main ()  ` `{  ` `    ``int` `n = 10;  ` `    ``int` `m = 30; ` `    ``Console.WriteLine(area_of_circle(m, n));  ` `}  ` `}  ` ` `  `// This code is contributed by Sanjit_Prasad `

Output:

```235.575
```

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.