A circular sector or circle sector is the portion of a disk enclosed by two radii and an arc, where the smaller area is known as the minor sector and the larger being the major sector. Let’s look at this figure and try to figure out the sector:

source: Wikipedia ( https://goo.gl/mWijn2 )
In this figure the green shaded part is a sector, “r” is the Radius and “theta” is the angle as shown. Here, we can say that the shaded portion is the minor sector and the other portion is the major sector. “L” is the Arc of the Sector. For more, visit Sector.
Now let’s see the formula using which the sector of a circle can be calculated.

The area of the sector is similar to the calculation of the area of the circle, just multiply the area of the circle with the angle of the sector.
Examples:
Input:
radius = 9
angle = 60
Explanation:
Sector = ( pi * 9*9 ) * ( 60 / 360 )
Output: 42.42857142857142
Input:
radius = 20
angle = 145
Explanation:
Sector = ( pi * 20*20 ) * ( 145 / 360 )
Output: 506.3492063492063
C++
#include <iostream>
using namespace std;
void SectorArea( double radius, double angle)
{
if (angle >= 360)
cout<< "Angle not possible" ;
else
{
double sector = ((22 * radius * radius) / 7)
* (angle / 360);
cout<<sector;
}
}
int main()
{
double radius = 9;
double angle = 60;
SectorArea(radius, angle);
return 0;
}
|
Java
class GFG
{
static void SectorArea( double radius, double angle)
{
if (angle >= 360 )
System.out.println( "Angle not possible" );
else
{
double sector =(( 22 * radius * radius) / 7 )
* (angle / 360 );
System.out.println(sector);
}
}
public static void main (String[] args)
{
double radius = 9 ;
double angle = 60 ;
SectorArea(radius, angle);
}
}
|
Python3
def SectorArea(radius, angle):
pi = 22 / 7
if angle > = 360 :
print ( "Angle not possible" )
return
else :
sector = (pi * radius * * 2 ) * (angle / 360 )
print (sector)
return
radius = 9
angle = 60
SectorArea(radius, angle)
|
C#
using System;
class GFG {
static void SectorArea( double radius, double angle)
{
if (angle >= 360)
Console.WriteLine( "Angle not possible" );
else {
double sector = ((22 * radius * radius) / 7)
* (angle / 360);
Console.WriteLine(sector);
}
}
public static void Main()
{
double radius = 9;
double angle = 60;
SectorArea(radius, angle);
}
}
|
PHP
<?php
function SectorArea( $radius , $angle )
{
if ( $angle >= 360)
echo ( "Angle not possible" );
else
{
$sector = ((22 * $radius * $radius )
/ 7) * ( $angle / 360);
echo ( $sector );
}
}
$radius = 9;
$angle = 60;
SectorArea( $radius , $angle );
?>
|
Javascript
<script>
function SectorArea(radius, angle)
{
if (angle >= 360)
document.write( "Angle not possible" );
else
{
let sector =((22 * radius * radius) / 7)
* (angle / 360);
document.write(sector);
}
}
let radius = 9;
let angle = 60;
SectorArea(radius, angle);
</script>
|
Output:
42.42857142857142
Time complexity: O(1)
Auxiliary Space: O(1)
Reference: Wikipedia (Circular Sector)
This article is contributed by Chinmoy Lenka. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.