Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Area of a Hexagon

  • Difficulty Level : Basic
  • Last Updated : 07 Nov, 2021

A hexagon is a 6-sided, 2-dimensional geometric figure. The total of the internal angles of any hexagon is 720°. A regular hexagon has 6 rotational symmetries and 6 reflection symmetries. All internal angles are 120 degrees. 
 

Area of Hexagon

Examples : 
 

Input: 4
Output: 41.5692

Input: 6
Output: 93.5307

 

 

Number of vertices: 6 
Number of edges: 6 
Internal angle: 120° 
Area = (3 √3(n)2 ) / 2

How does the formula work? There are mainly 6 equilateral triangles of side n and area of an equilateral triangle is (sqrt(3)/4) * n * n. Since in hexagon, there are total 6 equilateral triangles with side n, are of the hexagon becomes (3*sqrt(3)/2) * n * n
 

C++




// CPP program to find 
// area of a Hexagon
#include <iostream>
#include <math.h>
using namespace std;
  
// function for calculating
// area of the hexagon.
double hexagonArea(double s)
{
    return ((3 * sqrt(3) * 
            (s * s)) / 2);     
}
  
// Driver Code
int main()
{
    // Length of a side 
    double s = 4; 
    cout << "Area : "
         << hexagonArea(s);
    return 0;
}

Java




class GFG 
    // Create a function for calculating
    // the area of the hexagon.
    public static double hexagonArea(double s) 
    {
        return ((3 * Math.sqrt(3) * 
                (s * s)) / 2);
    
          
    // Driver Code
    public static void main(String[] args) 
    {     
        // Length of a side
        double s = 4;      
        System.out.print("Area: "
                          hexagonArea(s) );
    }
}

Python3




# Python3 program to find
# area of a Hexagon
import math
  
# Function for calculating 
# area of the hexagon.
def hexagonArea(s):
      
    return ((3 * math.sqrt(3) * 
            (s * s)) / 2); 
      
# Driver code     
if __name__ == "__main__"
  
    # length of a side. 
    s = 4
  
    print("Area:","{0:.4f}"
           format(hexagonArea(s)))
  
# This code is contributed by Naman_Garg

C#




// C# program to find
// area of a Hexagon
using System;
  
class GFG 
{
      
    // Create a function for calculating
    // the area of the hexagon.
    public static double hexagonArea(double s) 
    {
        return ((3 * Math.Sqrt(3) * 
                (s * s)) / 2);
    
          
    // Driver Code
    public static void Main() 
    {
        // Length of a side 
        double s = 4; 
          
        Console.WriteLine("Area: "
                           hexagonArea(s) );
    }
}
  
// This code is contributed by vt_m.

PHP




<?php
// PHP program to find 
// area of a Hexagon
  
// function for calculating
// area of the hexagon.
function hexagonArea( $s)
{
    return ((3 * sqrt(3) * 
            ($s * $s)) / 2); 
}
  
// Driver Code
  
// Length of a side 
$s = 4; 
echo("Area : ");
echo(hexagonArea($s));
  
// This code is contributed by vt_m.
?>

Javascript




<script>
  
// Javascript program to find 
// area of a Hexagon 
  
// function for calculating 
// area of the hexagon. 
function hexagonArea(s) 
    return ((3 * Math.sqrt(3) * 
            (s * s)) / 2);     
  
// Driver Code 
   
    // Length of a side 
    let s = 4; 
    document.write("Area : "
        + hexagonArea(s)); 
  
// This code is contributed by Mayank Tyagi
</script>

Output : 
 

Area: 41.5692

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!