# Area of a Hexagon

• Last Updated : 07 Nov, 2021

A hexagon is a 6-sided, 2-dimensional geometric figure. The total of the internal angles of any hexagon is 720°. A regular hexagon has 6 rotational symmetries and 6 reflection symmetries. All internal angles are 120 degrees. Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12.

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

Examples :

```Input: 4
Output: 41.5692

Input: 6
Output: 93.5307```

Number of vertices: 6
Number of edges: 6
Internal angle: 120°
Area = (3 √3(n)2 ) / 2

How does the formula work? There are mainly 6 equilateral triangles of side n and area of an equilateral triangle is (sqrt(3)/4) * n * n. Since in hexagon, there are total 6 equilateral triangles with side n, are of the hexagon becomes (3*sqrt(3)/2) * n * n

## C++

 `// CPP program to find ``// area of a Hexagon``#include ``#include ``using` `namespace` `std;`` ` `// function for calculating``// area of the hexagon.``double` `hexagonArea(``double` `s)``{``    ``return` `((3 * ``sqrt``(3) * ``            ``(s * s)) / 2);     ``}`` ` `// Driver Code``int` `main()``{``    ``// Length of a side ``    ``double` `s = 4; ``    ``cout << ``"Area : "``         ``<< hexagonArea(s);``    ``return` `0;``}`

## Java

 `class` `GFG ``{ ``    ``// Create a function for calculating``    ``// the area of the hexagon.``    ``public` `static` `double` `hexagonArea(``double` `s) ``    ``{``        ``return` `((``3` `* Math.sqrt(``3``) * ``                ``(s * s)) / ``2``);``    ``} ``         ` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args) ``    ``{     ``        ``// Length of a side``        ``double` `s = ``4``;      ``        ``System.out.print(``"Area: "` `+ ``                          ``hexagonArea(s) );``    ``}``}`

## Python3

 `# Python3 program to find``# area of a Hexagon``import` `math`` ` `# Function for calculating ``# area of the hexagon.``def` `hexagonArea(s):``     ` `    ``return` `((``3` `*` `math.sqrt(``3``) ``*` `            ``(s ``*` `s)) ``/` `2``); ``     ` `# Driver code     ``if` `__name__ ``=``=` `"__main__"` `: `` ` `    ``# length of a side. ``    ``s ``=` `4`` ` `    ``print``(``"Area:"``,``"{0:.4f}"` `. ``           ``format``(hexagonArea(s)))`` ` `# This code is contributed by Naman_Garg`

## C#

 `// C# program to find``// area of a Hexagon``using` `System;`` ` `class` `GFG ``{``     ` `    ``// Create a function for calculating``    ``// the area of the hexagon.``    ``public` `static` `double` `hexagonArea(``double` `s) ``    ``{``        ``return` `((3 * Math.Sqrt(3) * ``                ``(s * s)) / 2);``    ``} ``         ` `    ``// Driver Code``    ``public` `static` `void` `Main() ``    ``{``        ``// Length of a side ``        ``double` `s = 4; ``         ` `        ``Console.WriteLine(``"Area: "` `+ ``                           ``hexagonArea(s) );``    ``}``}`` ` `// This code is contributed by vt_m.`

## PHP

 ``

## Javascript

 ``

Output :

`Area: 41.5692`

My Personal Notes arrow_drop_up