Area of a Hexagon
A hexagon is a 6-sided, 2-dimensional geometric figure. The total of the internal angles of any hexagon is 720°. A regular hexagon has 6 rotational symmetries and 6 reflection symmetries. All internal angles are 120 degrees.
Examples :
Input: 4 Output: 41.5692 Input: 6 Output: 93.5307
Number of vertices: 6
Number of edges: 6
Internal angle: 120°
Area = (3 √3(n)2 ) / 2
How does the formula work? There are mainly 6 equilateral triangles of side n and area of an equilateral triangle is (sqrt(3)/4) * n * n. Since in hexagon, there are total 6 equilateral triangles with side n, area of the hexagon becomes (3*sqrt(3)/2) * n * n
C++
// CPP program to find // area of a Hexagon #include <iostream> #include <math.h> using namespace std; // function for calculating // area of the hexagon. double hexagonArea( double s) { return ((3 * sqrt (3) * (s * s)) / 2); } // Driver Code int main() { // Length of a side double s = 4; cout << "Area : " << hexagonArea(s); return 0; } |
Java
import java.io.*; public class GFG { // Create a function for calculating // the area of the hexagon. public static double hexagonArea( double s) { return (( 3 * Math.sqrt( 3 ) * (s * s)) / 2 ); } // Driver Code public static void main(String[] args) { // Length of a side double s = 4 ; System.out.print( "Area: " + hexagonArea(s) ); } } |
Python3
# Python3 program to find # area of a Hexagon import math # Function for calculating # area of the hexagon. def hexagonArea(s): return (( 3 * math.sqrt( 3 ) * (s * s)) / 2 ); # Driver code if __name__ = = "__main__" : # length of a side. s = 4 print ( "Area:" , "{0:.4f}" . format (hexagonArea(s))) # This code is contributed by Naman_Garg |
C#
// C# program to find // area of a Hexagon using System; class GFG { // Create a function for calculating // the area of the hexagon. public static double hexagonArea( double s) { return ((3 * Math.Sqrt(3) * (s * s)) / 2); } // Driver Code public static void Main() { // Length of a side double s = 4; Console.WriteLine( "Area: " + hexagonArea(s) ); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find // area of a Hexagon // function for calculating // area of the hexagon. function hexagonArea( $s ) { return ((3 * sqrt(3) * ( $s * $s )) / 2); } // Driver Code // Length of a side $s = 4; echo ( "Area : " ); echo (hexagonArea( $s )); // This code is contributed by vt_m. ?> |
Javascript
<script> // Javascript program to find // area of a Hexagon // function for calculating // area of the hexagon. function hexagonArea(s) { return ((3 * Math.sqrt(3) * (s * s)) / 2); } // Driver Code // Length of a side let s = 4; document.write( "Area : " + hexagonArea(s)); // This code is contributed by Mayank Tyagi </script> |
Output :
Area: 41.5692
Time Complexity: O(1)
Auxiliary Space: O(1), since no extra space has been taken.
Please Login to comment...