# Area of a Hexagon

• Difficulty Level : Basic
• Last Updated : 22 Jun, 2022

A hexagon is a 6-sided, 2-dimensional geometric figure. The total of the internal angles of any hexagon is 720°. A regular hexagon has 6 rotational symmetries and 6 reflection symmetries. All internal angles are 120 degrees. Examples :

```Input: 4
Output: 41.5692

Input: 6
Output: 93.5307```

Number of vertices: 6
Number of edges: 6
Internal angle: 120°
Area = (3 √3(n)2 ) / 2

How does the formula work? There are mainly 6 equilateral triangles of side n and area of an equilateral triangle is (sqrt(3)/4) * n * n. Since in hexagon, there are total 6 equilateral triangles with side n, are of the hexagon becomes (3*sqrt(3)/2) * n * n

## C++

 `// CPP program to find``// area of a Hexagon``#include ``#include ``using` `namespace` `std;` `// function for calculating``// area of the hexagon.``double` `hexagonArea(``double` `s)``{``    ``return` `((3 * ``sqrt``(3) *``            ``(s * s)) / 2);    ``}` `// Driver Code``int` `main()``{``    ``// Length of a side``    ``double` `s = 4;``    ``cout << ``"Area : "``         ``<< hexagonArea(s);``    ``return` `0;``}`

## Java

 `class` `GFG``{``    ``// Create a function for calculating``    ``// the area of the hexagon.``    ``public` `static` `double` `hexagonArea(``double` `s)``    ``{``        ``return` `((``3` `* Math.sqrt(``3``) *``                ``(s * s)) / ``2``);``    ``}``        ` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{    ``        ``// Length of a side``        ``double` `s = ``4``;     ``        ``System.out.print(``"Area: "` `+``                          ``hexagonArea(s) );``    ``}``}`

## Python3

 `# Python3 program to find``# area of a Hexagon``import` `math` `# Function for calculating``# area of the hexagon.``def` `hexagonArea(s):``    ` `    ``return` `((``3` `*` `math.sqrt(``3``) ``*``            ``(s ``*` `s)) ``/` `2``);``    ` `# Driver code    ``if` `__name__ ``=``=` `"__main__"` `:` `    ``# length of a side.``    ``s ``=` `4` `    ``print``(``"Area:"``,``"{0:.4f}"` `.``           ``format``(hexagonArea(s)))` `# This code is contributed by Naman_Garg`

## C#

 `// C# program to find``// area of a Hexagon``using` `System;` `class` `GFG``{``    ` `    ``// Create a function for calculating``    ``// the area of the hexagon.``    ``public` `static` `double` `hexagonArea(``double` `s)``    ``{``        ``return` `((3 * Math.Sqrt(3) *``                ``(s * s)) / 2);``    ``}``        ` `    ``// Driver Code``    ``public` `static` `void` `Main()``    ``{``        ``// Length of a side``        ``double` `s = 4;``        ` `        ``Console.WriteLine(``"Area: "` `+``                           ``hexagonArea(s) );``    ``}``}` `// This code is contributed by vt_m.`

## PHP

 ``

## Javascript

 ``

Output :

`Area: 41.5692`

Time Complexity: O(1)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up