Area of a Hexagon

A hexagon is a 6-sided, 2-dimensional geometric figure. The total of the internal angles of any hexagon is 720°. A regular hexagon has 6 rotational symmetries and 6 reflection symmetries. All internal angles are 120 degrees. Examples :

Input: 4
Output: 41.5692

Input: 6
Output: 93.5307

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Number of vertices: 6
Number of edges: 6
Internal angle: 120°
Area = (3 √3(n)2 ) / 2

How does the formula work? There are mainly 6 equilateral triangles of side n and area of an equilateral triangle is (sqrt(3)/4) * n * n. Since in hexagon, there are total 6 equilateral triangles with side n, are of the hexagon becomes (3*sqrt(3)/2) * n * n

C++

 // CPP program to find  // area of a Hexagon #include #include using namespace std;    // function for calculating // area of the hexagon. double hexagonArea(double s) {     return ((3 * sqrt(3) *              (s * s)) / 2);      }    // Driver Code int main() {     // Length of a side      double s = 4;      cout << "Area : "          << hexagonArea(s);     return 0; }

Java

 class GFG  {      // Create a function for calculating     // the area of the hexagon.     public static double hexagonArea(double s)      {         return ((3 * Math.sqrt(3) *                  (s * s)) / 2);     }                 // Driver Code     public static void main(String[] args)      {              // Length of a side         double s = 4;               System.out.print("Area: " +                            hexagonArea(s) );     } }

Python3

 # Python3 program to find # area of a Hexagon import math    # Function for calculating  # area of the hexagon. def hexagonArea(s):            return ((3 * math.sqrt(3) *              (s * s)) / 2);         # Driver code      if __name__ == "__main__" :         # length of a side.      s = 4        print("Area:","{0:.4f}" .             format(hexagonArea(s)))    # This code is contributed by Naman_Garg

C#

 // C# program to find // area of a Hexagon using System;    class GFG  {            // Create a function for calculating     // the area of the hexagon.     public static double hexagonArea(double s)      {         return ((3 * Math.Sqrt(3) *                  (s * s)) / 2);     }                 // Driver Code     public static void Main()      {         // Length of a side          double s = 4;                     Console.WriteLine("Area: " +                             hexagonArea(s) );     } }    // This code is contributed by vt_m.

PHP



Output :

Area: 41.5692

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : vt_m, jit_t, Naman_Garg