Skip to content
Related Articles

Related Articles

Improve Article

Area of a circle inscribed in a rectangle which is inscribed in a semicircle

  • Last Updated : 16 Mar, 2021

Given a semicircle with radius R, which inscribes a rectangle of length L and breadth B, which in turn inscribes a circle of radius r. The task is to find the area of the circle with radius r.
Examples: 
 

Input : R = 2
Output : 1.57

Input : R = 5
Output : 9.8125

 

 

Approach:
 



We know the biggest rectangle that can be inscribed within the semicircle has, length, l=√2R/2
breadth, b=R/√2(Please refer
Also, the biggest circle that can be inscribed within the rectangle has radius, r=b/2=R/2√2(Please refer
So area of the circle, A=π*r^2=π(R/2√2)^2 
 

 

C++




// C++ Program to find the area of the circle
// inscribed within the rectangle which in turn
// is inscribed in a semicircle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area of the circle
float area(float r)
{
 
    // radius cannot be negative
    if (r < 0)
        return -1;
 
    // area of the circle
    float area = 3.14 * pow(r / (2 * sqrt(2)), 2);
    return area;
}
 
// Driver code
int main()
{
    float a = 5;
    cout << area(a) << endl;
    return 0;
}

Java




// Java Program to find the area of the circle
// inscribed within the rectangle which in turn
// is inscribed in a semicircle
 
import java.io.*;
 
class GFG {
 
 
// Function to find the area of the circle
static float area(float r)
{
 
    // radius cannot be negative
    if (r < 0)
        return -1;
 
    // area of the circle
    float area = (float)(3.14 * Math.pow(r / (2 * Math.sqrt(2)), 2));
    return area;
}
 
// Driver code
 
    public static void main (String[] args) {
            float a = 5;
    System.out.println( area(a));
    }
}
 
 // This code is contributed by ajit

Python3




# Python 3 Program to find the
# area of the circle inscribed
# within the rectangle which in
# turn is inscribed in a semicircle
from math import pow, sqrt
 
# Function to find the area
# of the circle
def area(r):
     
    # radius cannot be negative
    if (r < 0):
        return -1
 
    # area of the circle
    area = 3.14 * pow(r / (2 * sqrt(2)), 2);
     
    return area;
 
# Driver code
if __name__ == '__main__':
    a = 5
    print("{0:.6}".format(area(a)))
 
# This code is contributed By
# Surendra_Gangwar

C#




// C# Program to find the area of
// the circle inscribed within the
// rectangle which in turn is
// inscribed in a semicircle
using System;
 
class GFG
{
 
// Function to find the area
// of the circle
static float area(float r)
{
 
    // radius cannot be negative
    if (r < 0)
        return -1;
 
    // area of the circle
    float area = (float)(3.14 * Math.Pow(r /
                        (2 * Math.Sqrt(2)), 2));
    return area;
}
 
// Driver code
static public void Main (String []args)
{
    float a = 5;
    Console.WriteLine(area(a));
}
}
 
// This code is contributed
// by Arnab Kundu

PHP




<?php
// PHP Program to find the area
// of the circle inscribed within
// the rectangle which in turn
// is inscribed in a semicircle
 
// Function to find the area
// of the circle
function area($r)
{
    // radius cannot be negative
    if ($r < 0)
        return -1;
 
    // area of the circle
    $area = 3.14 * pow($r /
              (2 * sqrt(2)), 2);
    return $area;
}
 
// Driver code
$a = 5;
echo area($a);
 
// This code is contributed by mits

Javascript




<script>
// javascript Program to find the area of the circle
// inscribed within the rectangle which in turn
// is inscribed in a semicircle
 
// Function to find the area of the circle
function area(r)
{
 
    // radius cannot be negative
    if (r < 0)
        return -1;
 
    // area of the circle
    var area = (3.14 * Math.pow(r / (2 * Math.sqrt(2)), 2));
    return area;
}
 
// Driver code
var a = 5;
document.write( area(a).toFixed(6));
 
// This code contributed by shikhasingrajput
 
</script>
Output: 
9.8125

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :