Append X digits to the end of N to make it divisible by M
Given three positive integers N, M, and X, the task is to generate a number by appending X digits on the right side of N such that the number is divisible by M. If multiple solutions exist, then print any of them. Otherwise, print -1.
Examples:
Input: N = 10, M = 5, X = 4
Output: 105555
Explanation: One of possible values of N (= 10) by appending X(= 4) digits on the right side of N is 105555, which is divisible by M (= 5).Input: N = 4, M = 50, X = 2
Output: 400
Approach: The idea is to append X digits on the right side of N by trying out all possible digits from the range [0, 9] and after appending X digits on the right side of N, check if the number is divisible by M or not. If found to be true, then print the number. Otherwise, print -1. Following are the recurrence relation:
Follow the steps below to solve the problem:
- Use the above recurrence relation, check if the number N is divisible by M or not by appending X digits on the right side of N. If found to be true, then print the value of N by appending X digits.
- Otherwise, print -1.
Below is the implementation of the above approach :
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to check if the value of N by // appending X digits on right side of N // is divisible by M or not bool isDiv( int N, int X, int M, int & res) { // Base Case if (X == 0) { // If N is divisible // by M if (N % M == 0) { // Update res res = N; return true ; } return false ; } // Iterate over the range [0, 9] for ( int i = 0; i <= 9; i++) { // If N is divisible by M by // appending X digits if (isDiv(N * 10 + i, X - 1, M, res)) { return true ; } } } // Driver Code int main() { int N = 4, M = 50, X = 2; // Stores the number by appending // X digits on the right side of N int res = -1; isDiv(N, X, M, res); cout << res; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG { // Function to check if the value of N by // appending X digits on right side of N // is divisible by M or not static int isDiv( int N, int X, int M, int res) { // Base Case if (X == 0 ) { // If N is divisible // by M if (N % M == 0 ) { // Update res res = N; return res; } return res; } // Iterate over the range [0, 9] for ( int i = 0 ; i < 9 ; i++) { // If N is divisible by M by // appending X digits int temp = isDiv(N * 10 + i, X - 1 , M, res); if (temp != - 1 ) { return temp; } } return res; } // Driver code public static void main(String[] args) throws java.lang.Exception { int N = 4 , M = 50 , X = 2 ; // Stores the number by appending // X digits on the right side of N int res = - 1 ; res = isDiv(N, X, M, res); System.out.println(res); } } // This code is contributed by 18bhupenderyadav18. |
Python3
# Python3 program to implement # the above approach # Function to check if the value of N by # appending X digits on right side of N # is divisible by M or not # global variable to store result res = - 1 def isDiv(N, X, M): # Base case if (X = = 0 ): # If N is divisible # by M if (N % M = = 0 ): global res res = N return True return False # Iterate over the range [0, 9] for i in range ( 10 ): # if N is Divisible by M upon appending X digits if (isDiv(N * 10 + i, X - 1 , M)): return True # Driver Code if __name__ = = "__main__" : N, M, X = 4 , 50 , 2 if (isDiv(N, X, M)): print (res) else : print ( "-1" ) |
C#
// C# program to implement // the above approach using System; class GFG { // Function to check if the value of N by // appending X digits on right side of N // is divisible by M or not static int isDiv( int N, int X, int M, int res) { // Base Case if (X == 0) { // If N is divisible // by M if (N % M == 0) { // Update res res = N; return res; } return res; } // Iterate over the range [0, 9] for ( int i = 0; i < 9; i++) { // If N is divisible by M by // appending X digits int temp = isDiv(N * 10 + i, X - 1, M, res); if (temp != -1) { return temp; } } return res; } // Driver code public static void Main() { int N = 4, M = 50, X = 2; // Stores the number by appending // X digits on the right side of N int res = -1; res = isDiv(N, X, M, res); Console.WriteLine(res); } } // This code is contributed by sanjoy_62 |
Javascript
<script> // Javascript program to implement // the above approach var res = -1; // Function to check if the value of N by // appending X digits on right side of N // is divisible by M or not function isDiv(N, X, M) { // Base Case if (X == 0) { // If N is divisible // by M if (N % M == 0) { // Update res res = N; return true ; } return false ; } // Iterate over the range [0, 9] for ( var i = 0; i <= 9; i++) { // If N is divisible by M by // appending X digits if (isDiv(N * 10 + i, X - 1, M)) { return true ; } } } // Driver Code var N = 4, M = 50, X = 2; // Stores the number by appending // X digits on the right side of N isDiv(N, X, M, res); document.write(res); </script> |
400
Time Complexity: O(10X)
Auxiliary Space: O(1)
Please Login to comment...