Given are two congruent circles with two equal chords. The angle subtended to the centre from the chord of one of the circles is given. The task is to find the angle subtended by the chord to the centre of another circle.

**Examples:**

Input:z = 48Output:48 degreesInput:z = 93Output:93 degrees

**Approach**:

- In triangle
**AOB**and**PXQ****AO = PX**(radii of congruent circles)**BO = QX**(radii of congruent circles)**AB = PQ**(equal chords) - So, triangle
**AOB**is**congruent**with triangle**PXQ** - So, angle
**AOB**= angle**PXQ**

Equal chords of congruent circles subtend equal angles at their centres.

Below is the implementation of the above approach:

## C++

`// C++ program to find the angle subtended by the chord ` `// to the centre of the circle when the angle subtended ` `// by another equal chord of a congruent circle is given ` ` ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `void` `anglequichord(` `int` `z) ` `{ ` ` ` `cout << ` `"The angle is "` `<< z ` ` ` `<< ` `" degrees"` `<< endl; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `z = 48; ` ` ` `anglequichord(z); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program to find the angle subtended by the chord ` `// to the centre of the circle when the angle subtended ` `// by another equal chord of a congruent circle is given ` ` ` `import` `java.io.*; ` ` ` `class` `GFG ` `{ ` ` ` `static` `void` `anglequichord(` `int` `z) ` `{ ` ` ` `System.out.println (` `"The angle is "` `+ z + ` `" degrees"` `); ` `} ` ` ` `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` ` ` ` ` `int` `z = ` `48` `; ` ` ` `anglequichord(z); ` ` ` `} ` `} ` |

*chevron_right*

*filter_none*

## Python 3

`# Python 3 program to find the angle subtended by the chord ` `# to the centre of the circle when the angle subtended ` `# by another equal chord of a congruent circle is given ` ` ` ` ` `def` `anglequichord(z): ` ` ` `print` `(` `"The angle is "` `, z ` ` ` `, ` `" degrees"` `) ` ` ` `# Driver code ` `if` `__name__ ` `=` `=` `"__main__"` `: ` ` ` `z ` `=` `48` ` ` `anglequichord(z) ` ` ` `# This code is contributed by ChitraNayal ` |

*chevron_right*

*filter_none*

## C#

`// C# program to find the angle subtended by the chord ` `// to the centre of the circle when the angle subtended ` `// by another equal chord of a congruent circle is given ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` ` ` `static` `void` `anglequichord(` `int` `z) ` ` ` `{ ` ` ` `Console.WriteLine(` `"The angle is "` `+ z + ` `" degrees"` `); ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `Main () ` ` ` `{ ` ` ` ` ` `int` `z = 48; ` ` ` `anglequichord(z); ` ` ` `} ` `} ` ` ` `// This code is contributed by AnkitRai01 ` |

*chevron_right*

*filter_none*

**Output:**

The angle is 48 degrees

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Angle subtended by the chord when the angle subtended by another chord of same length is given
- Program to calculate angle on circumference subtended by the chord when the central angle subtended by the chord is given
- Length of the chord of the circle whose radius and the angle subtended at the center by the chord is given
- Distance of chord from center when distance between center and another equal length chord is given
- Length of the chord the circle if length of the another chord which is equally inclined through the diameter is given
- Angle between a chord and a tangent when angle in the alternate segment is given
- Angle subtended by an arc at the centre of a circle
- Nth angle of a Polygon whose initial angle and per angle increment is given
- Discrete logarithm (Find an integer k such that a^k is congruent modulo b)
- Program to calculate area of inner circle which passes through center of outer circle and touches its circumference
- Exterior angle of a cyclic quadrilateral when the opposite interior angle is given
- Find the Diameter or Longest chord of a Circle
- Shortest distance from the centre of a circle to a chord
- Count ways to divide circle using N non-intersecting chord | Set-2
- Area of Triangle using Side-Angle-Side (length of two sides and the included angle)
- Check if a circle lies inside another circle or not
- Minimum revolutions to move center of a circle to a target
- Find the center of the circle using endpoints of diameter
- Distance between centers of two intersecting circles if the radii and common chord length is given
- Equation of circle when three points on the circle are given

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.