# Angle between two Planes in 3D

Given two planes P1: a1 * x + b1 * y + c1 * z + d1 = 0 and P2: a2 * x + b2 * y + c2 * z + d2 = 0. The task is to find the angle between these two planes in 3D. Examples:

Input: a1 = 1, b1 = 1, c1 = 2, d1 = 1, a2 = 2, b2 = -1, c2 = 1, d2 = -4
Output: Angle is 60.0 degree

Input: a1 = 2, b1 = 2, c1 = -3, d1 = -5, a2 = 3, b2 = -3, c2 = 5, d2 = -6
Output: Angle is 123.696598882 degree

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Consider the below equations of given two planes:

P1 : a1 * x + b1 * y + c1 * z + d1 = 0 and,
P2 : a2 * x + b2 * y + c2 * z + d2 = 0, 

where a1, b1, c1, and a2, b2, c2 are direction ratios of normal to the plane P1 and P2.

The angle between two planes is equal to the angle determined by the normal vectors of the planes.
Angle between these planes is given by using the following formula:-
Cos A = Using inverse property, we get:
A = Below is the implementation of the above formulae:

## C++

 // C++ program to find   // the Angle between  // two Planes in 3 D.  #include    #include     using namespace std;     // Function to find Angle  void distance(float a1, float b1,                float c1, float a2,                float b2, float c2)  {      float d = (a1 * a2 + b1 *                  b2 + c1 * c2);      float e1 = sqrt(a1 * a1 + b1 *                       b1 + c1 * c1);      float e2 = sqrt(a2 * a2 + b2 *                       b2 + c2 * c2);      d = d / (e1 * e2);      float pi = 3.14159;      float A = (180 / pi) * (acos(d));      cout << "Angle is "           << A << " degree";  }     // Driver Code   int main()  {      float a1 = 1;      float b1 = 1;      float c1 = 2;      float d1 = 1;      float a2 = 2;      float b2 = -1;      float c2 = 1;      float d2 = -4;      distance(a1, b1, c1,                a2, b2, c2);      return 0;  }     // This code is contributed   // by Akanksha Rai(Abby_akku)

## C

 // C program to find   // the Angle between  // two Planes in 3 D.  #include  #include     // Function to find Angle  void distance(float a1, float b1,                float c1, float a2,                float b2, float c2)  {      float d = (a1 * a2 + b1 *                  b2 + c1 * c2);      float e1 = sqrt(a1 * a1 + b1 *                       b1 + c1 * c1);      float e2 = sqrt(a2 * a2 + b2 *                       b2 + c2 * c2);      d = d / (e1 * e2);      float pi = 3.14159;      float A = (180 / pi) * (acos(d));      printf("Angle is %.2f degree", A);  }     // Driver Code   int main()  {      float a1 = 1;      float b1 = 1;      float c1 = 2;      float d1 = 1;      float a2 = 2;      float b2 = -1;      float c2 = 1;      float d2 = -4;      distance(a1, b1, c1,                a2, b2, c2);      return 0;  }     // This code is contributed   // by Amber_Saxena.

## Java

 // Java program to find   // the Angle between  // two Planes in 3 D.   import java .io.*;   import java.lang.Math;      class GFG   {          // Function to find Angle  static void distance(float a1, float b1,                       float c1, float a2,                       float b2, float c2)   {              float d = (a1 * a2 + b1 *                  b2 + c1 * c2);      float e1 = (float)Math.sqrt(a1 * a1 + b1 *                                   b1 + c1 * c1);      float e2 = (float)Math.sqrt(a2 * a2 + b2 *                                   b2 + c2 * c2);      d = d / (e1 * e2);      float pi = (float)3.14159;      float A = (180 / pi) * (float)(Math.acos(d));      System.out.println("Angle is "+ A +" degree");  }      // Driver code   public static void main(String[] args)   {       float a1 = 1;      float b1 = 1;      float c1 = 2;      float d1 = 1;      float a2 = 2;      float b2 = -1;      float c2 = 1;      float d2 = -4;      distance(a1, b1, c1,                a2, b2, c2);  }   }      // This code is contributed   // by Amber_Saxena.

## Python

 # Python program to find the Angle between  # two Planes in 3 D.     import math     # Function to find Angle  def distance(a1, b1, c1, a2, b2, c2):              d = ( a1 * a2 + b1 * b2 + c1 * c2 )      e1 = math.sqrt( a1 * a1 + b1 * b1 + c1 * c1)      e2 = math.sqrt( a2 * a2 + b2 * b2 + c2 * c2)      d = d / (e1 * e2)      A = math.degrees(math.acos(d))      print("Angle is"), A, ("degree")     # Driver Code   a1 = 1 b1 = 1 c1 = 2 d1 = 1 a2 = 2 b2 = -1 c2 = 1 d2 = -4 distance(a1, b1, c1, a2, b2, c2)

## C#

 // C# program to find   // the Angle between  // two Planes in 3 D.   using System;      class GFG   {          // Function to find Angle  static void distance(float a1, float b1,                       float c1, float a2,                        float b2, float c2)   {              float d = (a1 * a2 + b1 *                  b2 + c1 * c2);      float e1 = (float)Math.Sqrt(a1 * a1 + b1 *                                   b1 + c1 * c1);      float e2 = (float)Math.Sqrt(a2 * a2 + b2 *                                   b2 + c2 * c2);      d = d / (e1 * e2);      float pi = (float)3.14159;      float A = (180 / pi) * (float)(Math.Acos(d));      Console.Write("Angle is "+ A +" degree");  }      // Driver code   public static void Main()   {       float a1 = 1;      float b1 = 1;      float c1 = 2;      float a2 = 2;      float b2 = -1;      float c2 = 1;             distance(a1, b1, c1,               a2, b2, c2);  }   }      // This code is contributed   // by ChitraNayal

## PHP

 

Output:

Angle is 60.0 degree


Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.