# Angle between a Pair of Lines in 3D

• Last Updated : 02 Feb, 2022

Given coordinates of three points A(x1, y1, z1), B(x2, y2, z2), and C(x3, y3, z3) in a 3D plane, where B is the intersection point of line AB and BC, the task is to find the angle between lines AB and BC.

Examples:

Input: x1 = 1, y1 = 3, z1 = 3; x2 = 3, y2 = 4, z2 = 5; x3 = 5, y3 = 6, z3 = 9;
Output: 54.6065
Input: x1 = 10, y1 = 10, z1 = 10; x2 = 0, y2 = 0, z2 = 0; x3 = 15, y3 = 10, z3 = 15;
Output: 56.4496

Approach:

1. Find the equation of lines AB and BC with the given coordinates in terms of direction ratios as:

AB = (x1 â€“ x2)i + (y1 â€“ y2)j + (z1 â€“ z2)k
BC = (x3 â€“ x2)i + (y3 â€“ y2)j + (z3 â€“ z2)k

2. Use the formula for cos Î˜ for the two direction ratios of lines AB and BC to find the cosine of the angle between lines AB and BC as:

where,
AB.BC is the dot product of direction ratios AB and BC.
|AB| is the magnitude of line AB
|BC| is the magnitude of line BC

3. Suppose there are two direction ratios:

A = ai + bj + ck
B = xi + yj + zk

then

Dot Product(A.B) = a*x + b*y + c*z
magnitude of A = |A| =
magnitude of B = |B| =

4. The cosine of the angle calculated gives the cosine value in radian. To find the angle multiply the cosine value by (180/Î ).

Below is the implementation of the above approach:

## C++

 // C++ program for the above approach #include "bits/stdc++.h"#define PI 3.14using namespace std; // Function to find the angle between// the two linesvoid calculateAngle(    int x1, int y1, int z1,    int x2, int y2, int z2,    int x3, int y3, int z3){    // Find direction ratio of line AB    int ABx = x1 - x2;    int ABy = y1 - y2;    int ABz = z1 - z2;     // Find direction ratio of line BC    int BCx = x3 - x2;    int BCy = y3 - y2;    int BCz = z3 - z2;     // Find the dotProduct    // of lines AB & BC    double dotProduct        = ABx * BCx          + ABy * BCy          + ABz * BCz;     // Find magnitude of    // line AB and BC    double magnitudeAB        = ABx * ABx          + ABy * ABy          + ABz * ABz;    double magnitudeBC        = BCx * BCx          + BCy * BCy          + BCz * BCz;     // Find the cosine of    // the angle formed    // by line AB and BC    double angle = dotProduct;    angle /= sqrt(        magnitudeAB * magnitudeBC);     // Find angle in radian    angle = (angle * 180) / PI;     // Print the angle    cout << abs(angle) << endl;} // Driver Codeint main(){     // Given coordinates    // Points A    int x1 = 1, y1 = 3, z1 = 3;     // Points B    int x2 = 3, y2 = 4, z2 = 5;     // Points C    int x3 = 5, y3 = 6, z3 = 9;     // Function Call    calculateAngle(x1, y1, z1,                   x2, y2, z2,                   x3, y3, z3);     return 0;}

## Java

 // Java program for the above approachimport java.util.*; class GFG{     // Function to find the angle// between the two linesstatic void calculateAngle(int x1, int y1, int z1,                           int x2, int y2, int z2,                           int x3, int y3, int z3){         // Find direction ratio of line AB    int ABx = x1 - x2;    int ABy = y1 - y2;    int ABz = z1 - z2;     // Find direction ratio of line BC    int BCx = x3 - x2;    int BCy = y3 - y2;    int BCz = z3 - z2;     // Find the dotProduct    // of lines AB & BC    double dotProduct = ABx * BCx +                        ABy * BCy +                        ABz * BCz;     // Find magnitude of    // line AB and BC    double magnitudeAB = ABx * ABx +                         ABy * ABy +                         ABz * ABz;    double magnitudeBC = BCx * BCx +                         BCy * BCy +                         BCz * BCz;     // Find the cosine of the    // angle formed by line    // AB and BC    double angle = dotProduct;    angle /= Math.sqrt(magnitudeAB * magnitudeBC);     // Find angle in radian    angle = (angle * 180) / 3.14;     // Print the angle    System.out.printf("%.4f", Math.abs(angle));} // Driver codepublic static void main(String[] args){     // Given coordinates    // Points A    int x1 = 1, y1 = 3, z1 = 3;     // Points B    int x2 = 3, y2 = 4, z2 = 5;     // Points C    int x3 = 5, y3 = 6, z3 = 9;     // Function Call    calculateAngle(x1, y1, z1,                   x2, y2, z2,                   x3, y3, z3);}} // This code is contributed by offbeat

## Python3

 # Python3 program for the above approachimport math # Function to find the angle# between the two linesdef calculateAngle(x1, y1, z1,                   x2, y2, z2,                   x3, y3, z3):                            # Find direction ratio of line AB    ABx = x1 - x2;    ABy = y1 - y2;    ABz = z1 - z2;     # Find direction ratio of line BC    BCx = x3 - x2;    BCy = y3 - y2;    BCz = z3 - z2;     # Find the dotProduct    # of lines AB & BC    dotProduct = (ABx * BCx +                  ABy * BCy +                  ABz * BCz);     # Find magnitude of    # line AB and BC    magnitudeAB = (ABx * ABx +                   ABy * ABy +                   ABz * ABz);    magnitudeBC = (BCx * BCx +                   BCy * BCy +                   BCz * BCz);     # Find the cosine of    # the angle formed    # by line AB and BC    angle = dotProduct;    angle /= math.sqrt(magnitudeAB *                       magnitudeBC);     # Find angle in radian    angle = (angle * 180) / 3.14;     # Print angle    print(round(abs(angle), 4)) # Driver Codeif __name__=='__main__':     # Given coordinates    # Points A    x1, y1, z1 = 1, 3, 3;     # Points B    x2, y2, z2 = 3, 4, 5;     # Points C    x3, y3, z3 = 5, 6, 9;      # Function Call    calculateAngle(x1, y1, z1,                   x2, y2, z2,                   x3, y3, z3); # This code is contributed by AbhiThakur

## C#

 // C# program for the above approachusing System;class GFG{     // Function to find the angle// between the two linesstatic void calculateAngle(int x1, int y1,                           int z1, int x2,                           int y2, int z2,                           int x3, int y3,                           int z3){         // Find direction ratio of line AB    int ABx = x1 - x2;    int ABy = y1 - y2;    int ABz = z1 - z2;     // Find direction ratio of line BC    int BCx = x3 - x2;    int BCy = y3 - y2;    int BCz = z3 - z2;     // Find the dotProduct    // of lines AB & BC    double dotProduct = ABx * BCx +                        ABy * BCy +                        ABz * BCz;     // Find magnitude of    // line AB and BC    double magnitudeAB = ABx * ABx +                         ABy * ABy +                         ABz * ABz;    double magnitudeBC = BCx * BCx +                         BCy * BCy +                         BCz * BCz;     // Find the cosine of the    // angle formed by line    // AB and BC    double angle = dotProduct;    angle /= Math.Sqrt(magnitudeAB *                       magnitudeBC);     // Find angle in radian    angle = (angle * 180) / 3.14;     // Print the angle    Console.Write(String.Format("{0:F4}", Math.Abs(angle)));} // Driver codepublic static void Main(){     // Given coordinates    // Points A    int x1 = 1, y1 = 3, z1 = 3;     // Points B    int x2 = 3, y2 = 4, z2 = 5;     // Points C    int x3 = 5, y3 = 6, z3 = 9;     // Function Call    calculateAngle(x1, y1, z1,                   x2, y2, z2,                   x3, y3, z3);}} // This code is contributed by Code_Mech

## Javascript



Output:

54.6065

My Personal Notes arrow_drop_up