Almost Perfect Number

Given a number n, check it is the Almost Perfect number or not. Almost perfect number is a natural number whose sum of all divisors including 1 and the number itself is equal to 2n – 1.

Example :

Input: n = 16
Output: Yes
Explanation: sum of divisors = 1 + 2 + 4 + 8 + 16 = 31 = 2n - 1

Input: n = 9
Output: No
Explanation: sum of divisors = 1 + 3 + 9 ≠ 2n - 1

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to check if a number
// is almost perfect.
#include <bits/stdc++.h>
using namespace std;
  
bool isAlmostperfect(int n)
{
    int divisors = 0;
  
    for (int i = 1; i <= n; i++) {
  
        // store sum of divisors of n
        if (n % i == 0)
            divisors += i;
    }
  
    // sum of divisors = 2*n - 1
    if (divisors == 2 * n - 1)
        return true;
  
    return false;
}
  
int main()
{
    int n = 16;
    if (isAlmostperfect(n))
        cout << "Yes";
    else
        cout << "No";
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check if a 
// number is almost perfect.
  
class GFG {
      
// Function to check number is 
// almost perfect or not
static boolean isAlmostperfect(int n)
{
    int divisors = 0;
  
    for (int i = 1; i <= n; i++)
    {
  
        // store sum of divisors of n
        if (n % i == 0)
            divisors += i;
    }
  
    // sum of divisors = 2*n - 1
    if (divisors == 2 * n - 1)
        return true;
  
    return false;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 16;
    if (isAlmostperfect(n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
  
// This code is contributed by
// Smitha Dinesh Semwal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to check if a number
# is almost perfect.
def isAlmostperfect(n):
  
    divisors = 0
    for i in range(1, n+1):
  
        # store sum of divisors of n
        if (n % i == 0):
            divisors = divisors + i
  
    # sum of divisors = 2*n - 1
    if (divisors == 2 * n - 1):
        return True
    else:
        return False
  
# Driver code
n = 16
if (isAlmostperfect(n)):
    print ("Yes")
else:
    print ("No")
  
# This code is contributed by
# Manish Shaw (manishshaw1)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check if a 
// number is almost perfect.
using System;
  
class GFG
{
      
    // Function to check number is 
    // almost perfect or not
    static bool isAlmostperfect(int n)
    {
        int divisors = 0;
      
        for (int i = 1; i <= n; i++)
        {
      
            // store sum of divisors of n
            if (n % i == 0)
                divisors += i;
        }
      
        // sum of divisors = 2 * n - 1
        if (divisors == 2 * n - 1)
            return true;
      
        return false;
    }
  
    // Driver Code
    static public void Main ()
    {
        int n = 16;
          
        if (isAlmostperfect(n))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
  
// This code is contributed by Ajit.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to check if a 
// number is almost perfect.
  
// function to check 
// almost perfect
function isAlmostperfect($n)
{
    $divisors = 0;
  
    for ($i = 1; $i <= $n; $i++)
    {
  
        // store sum of 
        // divisors of n
        if ($n % $i == 0)
            $divisors += $i;
    }
  
    // sum of divisors = 2*n - 1
    if ($divisors == 2 * $n - 1)
        return true;
  
    return false;
}
  
// Driver code
$n = 16;
if (isAlmostperfect($n))
    echo("Yes");
else
    echo("No");
  
// This code is contributed by Ajit.
?>

chevron_right


Output:

Yes

The almost perfect numbers are found to be of the form 2^k(k = 0, 1, 2, 3, 4, ..). However it is not proved.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.