# All vertex pairs connected with exactly k edges in a graph

Given a directed graph represented as an adjacency matrix and an integer ‘k’, the task is to find all the vertex pairs that are connected with exactly ‘k’ edges.
Also, find the number of ways in which the two vertices can be linked in exactly k edges.

Examples :

```Input : k = 3 and graph :
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 0 1 0 0
Output :
1 -> 4 in 1 way(s)
1 -> 5 in 1 way(s)
2 -> 1 in 1 way(s)
2 -> 3 in 1 way(s)
3 -> 2 in 1 way(s)
3 -> 4 in 1 way(s)
3 -> 5 in 1 way(s)
4 -> 3 in 1 way(s)
5 -> 1 in 1 way(s)
5 -> 3 in 1 way(s)

Input : k = 2 and graph :
0 0 0
1 0 1
0 1 0
Output :
2 -> 2 in 1 way(s)
3 -> 1 in 1 way(s)
3 -> 3 in 1 way(s)
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach :

• We will multiply the adjacency matrix with itself ‘k’ number of times.
• In the resultant matrix, `res[i][j]` will be the number of ways in which vertex ‘j’ can be reached from vertex ‘i’ covering exactly ‘k’ edges.

Below is the implementation of the above approach :

## Java

 `// Java implementation of the approach ` `public` `class` `KPaths { ` ` `  `    ``// Function to multiply two square matrices ` `    ``static` `int``[][] multiplyMatrices(``int``[][] arr1, ``int``[][] arr2) ` `    ``{ ` `        ``int` `order = arr1.length; ` `        ``int``[][] ans = ``new` `int``[order][order]; ` `        ``for` `(``int` `i = ``0``; i < order; i++) { ` `            ``for` `(``int` `j = ``0``; j < order; j++) { ` `                ``for` `(``int` `k = ``0``; k < order; k++) { ` `                    ``ans[i][j] += arr1[i][k] * arr2[k][j]; ` `                ``} ` `            ``} ` `        ``} ` `        ``return` `ans; ` `    ``} ` ` `  `    ``// Function to find all the pairs that ` `    ``// can be connected with exactly 'k' edges ` `    ``static` `void` `solve(``int``[][] arr, ``int` `k) ` `    ``{ ` `        ``int``[][] res = ``new` `int``[arr.length][arr[``0``].length]; ` ` `  `        ``// copying arr to res, ` `        ``// which is the result for k=1 ` `        ``for` `(``int` `i = ``0``; i < res.length; i++) ` `            ``for` `(``int` `j = ``0``; j < res.length; j++) ` `                ``res[i][j] = arr[i][j]; ` ` `  `        ``// multiplying arr with itself ` `        ``// the required number of times ` `        ``for` `(``int` `i = ``2``; i <= k; i++) ` `            ``res = multiplyMatrices(res, arr); ` ` `  `        ``for` `(``int` `i = ``0``; i < res.length; i++) ` `            ``for` `(``int` `j = ``0``; j < res.length; j++) ` ` `  `                ``// if there is a path between 'i' ` `                ``// and 'j' in exactly 'k' edges ` `                ``if` `(res[i][j] > ``0``) ` `                    ``System.out.println(i + ``" -> "` `+ j + ``" in "` `+ res[i][j] + ``" way(s)"``); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int``[][] arr = ``new` `int``[``5``][``5``]; ` `        ``arr[``0``][``1``] = ``1``; ` `        ``arr[``1``][``2``] = ``1``; ` `        ``arr[``2``][``3``] = ``1``; ` `        ``arr[``2``][``4``] = ``1``; ` `        ``arr[``3``][``0``] = ``1``; ` `        ``arr[``4``][``2``] = ``1``; ` `        ``int` `k = ``3``; ` `        ``solve(arr, k); ` `    ``} ` `} `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `KPaths ` `{  ` ` `  `// Function to multiply two square matrices  ` `static` `int``[,] multiplyMatrices(``int``[,] arr1,  ` `                               ``int``[,] arr2)  ` `{  ` `    ``int` `order = arr1.GetLength(0);  ` `    ``int``[,] ans = ``new` `int``[order, order];  ` `    ``for` `(``int` `i = 0; i < order; i++)  ` `    ``{  ` `        ``for` `(``int` `j = 0; j < order; j++)  ` `        ``{  ` `            ``for` `(``int` `k = 0; k < order; k++)  ` `            ``{  ` `                ``ans[i, j] += arr1[i, k] *  ` `                             ``arr2[k, j];  ` `            ``}  ` `        ``}  ` `    ``}  ` `    ``return` `ans;  ` `}  ` ` `  `// Function to find all the pairs that  ` `// can be connected with exactly 'k' edges  ` `static` `void` `solve(``int``[,] arr, ``int` `k)  ` `{  ` `    ``int``[,] res = ``new` `int``[arr.GetLength(0), ` `                         ``arr.GetLength(1)];  ` ` `  `    ``// copying arr to res,  ` `    ``// which is the result for k = 1  ` `    ``for` `(``int` `i = 0; i < res.GetLength(0); i++)  ` `        ``for` `(``int` `j = 0; j < res.GetLength(1); j++)  ` `            ``res[i, j] = arr[i, j];  ` ` `  `    ``// multiplying arr with itself  ` `    ``// the required number of times  ` `    ``for` `(``int` `i = 2; i <= k; i++)  ` `        ``res = multiplyMatrices(res, arr);  ` ` `  `    ``for` `(``int` `i = 0; i < res.GetLength(0); i++)  ` `        ``for` `(``int` `j = 0; j < res.GetLength(1); j++)  ` ` `  `            ``// if there is a path between 'i'  ` `            ``// and 'j' in exactly 'k' edges  ` `            ``if` `(res[i,j] > 0)  ` `                ``Console.WriteLine(i + ``" -> "` `+ j + ``" in "` `+ ` `                                    ``res[i, j] + ``" way(s)"``);  ` `}  ` ` `  `// Driver code  ` `public` `static` `void` `Main(String[] args)  ` `{  ` `    ``int``[,] arr = ``new` `int``[5, 5];  ` `    ``arr[0, 1] = 1;  ` `    ``arr[1, 2] = 1;  ` `    ``arr[2, 3] = 1;  ` `    ``arr[2, 4] = 1;  ` `    ``arr[3, 0] = 1;  ` `    ``arr[4, 2] = 1;  ` `    ``int` `k = 3;  ` `    ``solve(arr, k);  ` `}  ` `}  ` ` `  `// This code is contributed by Rajput-Ji `

Output:

```0 -> 3 in 1 way(s)
0 -> 4 in 1 way(s)
1 -> 0 in 1 way(s)
1 -> 2 in 1 way(s)
2 -> 1 in 1 way(s)
2 -> 3 in 1 way(s)
2 -> 4 in 1 way(s)
3 -> 2 in 1 way(s)
4 -> 0 in 1 way(s)
4 -> 2 in 1 way(s)
```

The time complexity of the above code can be reduced for large values of k by using matrix exponentitation. The complexity can be changed from O(n^3 * k) to O(n^3 * log k)

## Java

 `class` `KPaths { ` ` `  `    ``// Function to multiply two square matrices ` `    ``static` `int``[][] multiplyMatrices(``int``[][] arr1, ``int``[][] arr2) ` `    ``{ ` `        ``int` `order = arr1.length; ` `        ``int``[][] ans = ``new` `int``[order][order]; ` `        ``for` `(``int` `i = ``0``; i < order; i++) { ` `            ``for` `(``int` `j = ``0``; j < order; j++) { ` `                ``for` `(``int` `k = ``0``; k < order; k++) { ` `                    ``ans[i][j] += arr1[i][k] * arr2[k][j]; ` `                ``} ` `            ``} ` `        ``} ` `        ``return` `ans; ` `    ``} ` ` `  `    ``// Function to find all the pairs that ` `    ``// can be connected with exactly 'k' edges ` `    ``static` `void` `solve(``int``[][] arr, ``int` `k) ` `    ``{ ` `        ``int``[][] res = ``new` `int``[arr.length][arr[``0``].length]; ` ` `  `        ``res = power(arr, k, arr[``0``].length); ` `        ``for` `(``int` `i = ``0``; i < res.length; i++) ` `            ``for` `(``int` `j = ``0``; j < res.length; j++) ` ` `  `                ``// if there is a path between 'i' ` `                ``// and 'j' in exactly 'k' edges ` `                ``if` `(res[i][j] > ``0``) ` `                    ``System.out.println(i + ``" -> "` `+ j + ``" in "` `+ res[i][j] + ``" way(s)"``); ` `    ``} ` ` `  `    ``static` `int``[][] power(``int` `x[][], ``int` `y, ``int` `n) ` `    ``{ ` `        ``// MATRIX EXPONENTIATION ` `        ``// Initialize result ` `        ``int` `res[][] = identity(n); ` ` `  `        ``while` `(y > ``0``) { ` ` `  `            ``if` `((y & ``1``) == ``1``) ` `                ``res = multiplyMatrices(res, x); ` ` `  `            ``// y must be even now ` `            ``// y = y / 2 ` `            ``y = y >> ``1``; ` `            ``x = multiplyMatrices(x, x); ` `        ``} ` `        ``return` `res; ` `    ``} ` `    ``static` `int``[][] identity(``int` `n) ` `    ``{ ` `        ``// returns identity matrix of order n ` `        ``int` `r[][] = ``new` `int``[n][n]; ` `        ``for` `(``int` `i = ``0``; i < n; i++) ` `            ``r[i][i] = ``1``; ` ` `  `        ``return` `r; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int``[][] arr = ``new` `int``[``5``][``5``]; ` `        ``arr[``0``][``1``] = ``1``; ` `        ``arr[``1``][``2``] = ``1``; ` `        ``arr[``2``][``3``] = ``1``; ` `        ``arr[``2``][``4``] = ``1``; ` `        ``arr[``3``][``0``] = ``1``; ` `        ``arr[``4``][``2``] = ``1``; ` `        ``int` `k = ``3``; ` `        ``solve(arr, k); ` `    ``} ` `} `

## C#

 `// C# implementation of the above approach:  ` `using` `System; ` ` `  `class` `KPaths  ` `{ ` ` `  `    ``// Function to multiply two square matrices ` `    ``static` `int``[,] multiplyMatrices(``int``[,] arr1,  ` `                                   ``int``[,] arr2) ` `    ``{ ` `        ``int` `order = arr1.GetLength(0); ` `        ``int``[,] ans = ``new` `int``[order,order]; ` `        ``for` `(``int` `i = 0; i < order; i++)  ` `        ``{ ` `            ``for` `(``int` `j = 0; j < order; j++) ` `            ``{ ` `                ``for` `(``int` `k = 0; k < order; k++)  ` `                ``{ ` `                    ``ans[i, j] += arr1[i, k] *  ` `                                 ``arr2[k, j]; ` `                ``} ` `            ``} ` `        ``} ` `        ``return` `ans; ` `    ``} ` ` `  `    ``// Function to find all the pairs that ` `    ``// can be connected with exactly 'k' edges ` `    ``static` `void` `solve(``int``[,] arr, ``int` `k) ` `    ``{ ` `        ``int``[,] res = ``new` `int``[arr.GetLength(0), ` `                             ``arr.GetLength(1)]; ` ` `  `        ``res = power(arr, k, arr.GetLength(0)); ` `        ``for` `(``int` `i = 0; i < res.GetLength(0); i++) ` `            ``for` `(``int` `j = 0; j < res.GetLength(1); j++) ` ` `  `                ``// if there is a path between 'i' ` `                ``// and 'j' in exactly 'k' edges ` `                ``if` `(res[i, j] > 0) ` `                    ``Console.WriteLine(i + ``" -> "` `+ j +   ` `                      ``" in "` `+ res[i, j] + ``" way(s)"``); ` `    ``} ` ` `  `    ``static` `int``[,] power(``int` `[,]x, ``int` `y, ``int` `n) ` `    ``{ ` `         `  `        ``// MATRIX EXPONENTIATION ` `        ``// Initialize result ` `        ``int` `[,]res = identity(n); ` ` `  `        ``while` `(y > 0) ` `        ``{ ` ` `  `            ``if` `((y & 1) == 1) ` `                ``res = multiplyMatrices(res, x); ` ` `  `            ``// y must be even now ` `            ``// y = y / 2 ` `            ``y = y >> 1; ` `            ``x = multiplyMatrices(x, x); ` `        ``} ` `        ``return` `res; ` `    ``} ` `     `  `    ``static` `int``[,] identity(``int` `n) ` `    ``{ ` `        ``// returns identity matrix of order n ` `        ``int` `[,]r = ``new` `int``[n, n]; ` `        ``for` `(``int` `i = 0; i < n; i++) ` `            ``r[i, i] = 1; ` ` `  `        ``return` `r; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main(String[] args) ` `    ``{ ` `        ``int``[,] arr = ``new` `int``[5, 5]; ` `        ``arr[0, 1] = 1; ` `        ``arr[1, 2] = 1; ` `        ``arr[2, 3] = 1; ` `        ``arr[2, 4] = 1; ` `        ``arr[3, 0] = 1; ` `        ``arr[4, 2] = 1; ` `        ``int` `k = 3; ` `        ``solve(arr, k); ` `    ``} ` `} ` ` `  `// This code is contributed by PrinciRaj1992  `

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.