All vertex pairs connected with exactly k edges in a graph
Given a directed graph represented as an adjacency matrix and an integer ‘k’, the task is to find all the vertex pairs that are connected with exactly ‘k’ edges.
Also, find the number of ways in which the two vertices can be linked in exactly k edges.
Examples :
Input : k = 3 and graph : 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 Output : 1 -> 4 in 1 way(s) 1 -> 5 in 1 way(s) 2 -> 1 in 1 way(s) 2 -> 3 in 1 way(s) 3 -> 2 in 1 way(s) 3 -> 4 in 1 way(s) 3 -> 5 in 1 way(s) 4 -> 3 in 1 way(s) 5 -> 1 in 1 way(s) 5 -> 3 in 1 way(s) Input : k = 2 and graph : 0 0 0 1 0 1 0 1 0 Output : 2 -> 2 in 1 way(s) 3 -> 1 in 1 way(s) 3 -> 3 in 1 way(s)
Approach :
- We will multiply the adjacency matrix with itself ‘k’ number of times.
- In the resultant matrix,
res[i][j]
will be the number of ways in which vertex ‘j’ can be reached from vertex ‘i’ covering exactly ‘k’ edges.
Below is the implementation of the above approach :
Java
// Java implementation of the approach public class KPaths { // Function to multiply two square matrices static int [][] multiplyMatrices( int [][] arr1, int [][] arr2) { int order = arr1.length; int [][] ans = new int [order][order]; for ( int i = 0 ; i < order; i++) { for ( int j = 0 ; j < order; j++) { for ( int k = 0 ; k < order; k++) { ans[i][j] += arr1[i][k] * arr2[k][j]; } } } return ans; } // Function to find all the pairs that // can be connected with exactly 'k' edges static void solve( int [][] arr, int k) { int [][] res = new int [arr.length][arr[ 0 ].length]; // copying arr to res, // which is the result for k=1 for ( int i = 0 ; i < res.length; i++) for ( int j = 0 ; j < res.length; j++) res[i][j] = arr[i][j]; // multiplying arr with itself // the required number of times for ( int i = 2 ; i <= k; i++) res = multiplyMatrices(res, arr); for ( int i = 0 ; i < res.length; i++) for ( int j = 0 ; j < res.length; j++) // if there is a path between 'i' // and 'j' in exactly 'k' edges if (res[i][j] > 0 ) System.out.println(i + " -> " + j + " in " + res[i][j] + " way(s)" ); } // Driver code public static void main(String[] args) { int [][] arr = new int [ 5 ][ 5 ]; arr[ 0 ][ 1 ] = 1 ; arr[ 1 ][ 2 ] = 1 ; arr[ 2 ][ 3 ] = 1 ; arr[ 2 ][ 4 ] = 1 ; arr[ 3 ][ 0 ] = 1 ; arr[ 4 ][ 2 ] = 1 ; int k = 3 ; solve(arr, k); } } |
C#
// C# implementation of the approach using System; class KPaths { // Function to multiply two square matrices static int [,] multiplyMatrices( int [,] arr1, int [,] arr2) { int order = arr1.GetLength(0); int [,] ans = new int [order, order]; for ( int i = 0; i < order; i++) { for ( int j = 0; j < order; j++) { for ( int k = 0; k < order; k++) { ans[i, j] += arr1[i, k] * arr2[k, j]; } } } return ans; } // Function to find all the pairs that // can be connected with exactly 'k' edges static void solve( int [,] arr, int k) { int [,] res = new int [arr.GetLength(0), arr.GetLength(1)]; // copying arr to res, // which is the result for k = 1 for ( int i = 0; i < res.GetLength(0); i++) for ( int j = 0; j < res.GetLength(1); j++) res[i, j] = arr[i, j]; // multiplying arr with itself // the required number of times for ( int i = 2; i <= k; i++) res = multiplyMatrices(res, arr); for ( int i = 0; i < res.GetLength(0); i++) for ( int j = 0; j < res.GetLength(1); j++) // if there is a path between 'i' // and 'j' in exactly 'k' edges if (res[i,j] > 0) Console.WriteLine(i + " -> " + j + " in " + res[i, j] + " way(s)" ); } // Driver code public static void Main(String[] args) { int [,] arr = new int [5, 5]; arr[0, 1] = 1; arr[1, 2] = 1; arr[2, 3] = 1; arr[2, 4] = 1; arr[3, 0] = 1; arr[4, 2] = 1; int k = 3; solve(arr, k); } } // This code is contributed by Rajput-Ji |
0 -> 3 in 1 way(s) 0 -> 4 in 1 way(s) 1 -> 0 in 1 way(s) 1 -> 2 in 1 way(s) 2 -> 1 in 1 way(s) 2 -> 3 in 1 way(s) 2 -> 4 in 1 way(s) 3 -> 2 in 1 way(s) 4 -> 0 in 1 way(s) 4 -> 2 in 1 way(s)
The time complexity of the above code can be reduced for large values of k by using matrix exponentitation. The complexity can be changed from O(n^3 * k) to O(n^3 * log k)
Java
class KPaths { // Function to multiply two square matrices static int [][] multiplyMatrices( int [][] arr1, int [][] arr2) { int order = arr1.length; int [][] ans = new int [order][order]; for ( int i = 0 ; i < order; i++) { for ( int j = 0 ; j < order; j++) { for ( int k = 0 ; k < order; k++) { ans[i][j] += arr1[i][k] * arr2[k][j]; } } } return ans; } // Function to find all the pairs that // can be connected with exactly 'k' edges static void solve( int [][] arr, int k) { int [][] res = new int [arr.length][arr[ 0 ].length]; res = power(arr, k, arr[ 0 ].length); for ( int i = 0 ; i < res.length; i++) for ( int j = 0 ; j < res.length; j++) // if there is a path between 'i' // and 'j' in exactly 'k' edges if (res[i][j] > 0 ) System.out.println(i + " -> " + j + " in " + res[i][j] + " way(s)" ); } static int [][] power( int x[][], int y, int n) { // MATRIX EXPONENTIATION // Initialize result int res[][] = identity(n); while (y > 0 ) { if ((y & 1 ) == 1 ) res = multiplyMatrices(res, x); // y must be even now // y = y / 2 y = y >> 1 ; x = multiplyMatrices(x, x); } return res; } static int [][] identity( int n) { // returns identity matrix of order n int r[][] = new int [n][n]; for ( int i = 0 ; i < n; i++) r[i][i] = 1 ; return r; } // Driver code public static void main(String[] args) { int [][] arr = new int [ 5 ][ 5 ]; arr[ 0 ][ 1 ] = 1 ; arr[ 1 ][ 2 ] = 1 ; arr[ 2 ][ 3 ] = 1 ; arr[ 2 ][ 4 ] = 1 ; arr[ 3 ][ 0 ] = 1 ; arr[ 4 ][ 2 ] = 1 ; int k = 3 ; solve(arr, k); } } |
C#
// C# implementation of the above approach: using System; class KPaths { // Function to multiply two square matrices static int [,] multiplyMatrices( int [,] arr1, int [,] arr2) { int order = arr1.GetLength(0); int [,] ans = new int [order,order]; for ( int i = 0; i < order; i++) { for ( int j = 0; j < order; j++) { for ( int k = 0; k < order; k++) { ans[i, j] += arr1[i, k] * arr2[k, j]; } } } return ans; } // Function to find all the pairs that // can be connected with exactly 'k' edges static void solve( int [,] arr, int k) { int [,] res = new int [arr.GetLength(0), arr.GetLength(1)]; res = power(arr, k, arr.GetLength(0)); for ( int i = 0; i < res.GetLength(0); i++) for ( int j = 0; j < res.GetLength(1); j++) // if there is a path between 'i' // and 'j' in exactly 'k' edges if (res[i, j] > 0) Console.WriteLine(i + " -> " + j + " in " + res[i, j] + " way(s)" ); } static int [,] power( int [,]x, int y, int n) { // MATRIX EXPONENTIATION // Initialize result int [,]res = identity(n); while (y > 0) { if ((y & 1) == 1) res = multiplyMatrices(res, x); // y must be even now // y = y / 2 y = y >> 1; x = multiplyMatrices(x, x); } return res; } static int [,] identity( int n) { // returns identity matrix of order n int [,]r = new int [n, n]; for ( int i = 0; i < n; i++) r[i, i] = 1; return r; } // Driver code public static void Main(String[] args) { int [,] arr = new int [5, 5]; arr[0, 1] = 1; arr[1, 2] = 1; arr[2, 3] = 1; arr[2, 4] = 1; arr[3, 0] = 1; arr[4, 2] = 1; int k = 3; solve(arr, k); } } // This code is contributed by PrinciRaj1992 |
Recommended Posts:
- Maximum number of edges among all connected components of an undirected graph
- Ways to Remove Edges from a Complete Graph to make Odd Edges
- Find a Mother Vertex in a Graph
- Find the Degree of a Particular vertex in a Graph
- Topological Sort of a graph using departure time of vertex
- k'th heaviest adjacent node in a graph where each vertex has weight
- Finding minimum vertex cover size of a graph using binary search
- Connected Components in an undirected graph
- Check if a directed graph is connected or not
- Check if a graph is strongly connected | Set 1 (Kosaraju using DFS)
- Cycles of length n in an undirected and connected graph
- Check if a given directed graph is strongly connected | Set 2 (Kosaraju using BFS)
- Check if there exists a connected graph that satisfies the given conditions
- Clone an undirected graph with multiple connected components
- Sum of the minimum elements in all connected components of an undirected graph
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.