Skip to content
Related Articles

Related Articles

Algorithms | Sorting | Question 18
  • Difficulty Level : Basic
  • Last Updated : 19 Feb, 2013

Consider the Quicksort algorithm. Suppose there is a procedure for finding a pivot element which splits the list into two sub-lists each of which contains at least one-fifth of the elements. Let T(n) be the number of comparisons required to sort n elements. Then
(A) T(n) <= 2T(n/5) + n
(B) T(n) <= T(n/5) + T(4n/5) + n
(C) T(n) <= 2T(4n/5) + n
(D) T(n) <= 2T(n/2) + n


Answer: (B)

Explanation: For the case where n/5 elements are in one subset, T(n/5) comparisons are needed for the first subset with n/5 elements, T(4n/5) is for the rest 4n/5 elements, and n is for finding the pivot.

If there are more than n/5 elements in one set then other set will have less than 4n/5 elements and time complexity will be less than T(n/5) + T(4n/5) + n because recursion tree will be more balanced.

Quiz of this Question

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :