Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Algorithms | Sorting | Question 1

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

What is recurrence for worst case of QuickSort and what is the time complexity in Worst case?
(A) Recurrence is T(n) = T(n-2) + O(n) and time complexity is O(n^2)
(B) Recurrence is T(n) = T(n-1) + O(n) and time complexity is O(n^2)
(C) Recurrence is T(n) = 2T(n/2) + O(n) and time complexity is O(nLogn)
(D) Recurrence is T(n) = T(n/10) + T(9n/10) + O(n) and time complexity is O(nLogn)


Answer: (B)

Explanation: The worst case of QuickSort occurs when the picked pivot is always one of the corner elements in sorted array. In worst case, QuickSort recursively calls one subproblem with size 0 and other subproblem with size (n-1). So recurrence is

T(n) = T(n-1) + T(0) + O(n)

The above expression can be rewritten as

T(n) = T(n-1) + O(n)




void exchange(int *a, int *b)
{
  int temp;
  temp = *a;
  *a   = *b;
  *b   = temp;
}
   
int partition(int arr[], int si, int ei)
{
  int x = arr[ei];
  int i = (si - 1);
  int j;
   
  for (j = si; j <= ei - 1; j++)
  {
    if(arr[j] <= x)
    {
      i++;
      exchange(&arr[i], &arr[j]);
    }
  }
   
  exchange (&arr[i + 1], &arr[ei]);
  return (i + 1);
}
   
/* Implementation of Quick Sort
arr[] --> Array to be sorted
si  --> Starting index
ei  --> Ending index
*/
void quickSort(int arr[], int si, int ei)
{
  int pi;    /* Partitioning index */
  if(si < ei)
  {
    pi = partition(arr, si, ei);
    quickSort(arr, si, pi - 1);
    quickSort(arr, pi + 1, ei);
  }
}


Quiz of this Question

My Personal Notes arrow_drop_up
Last Updated : 28 Jun, 2021
Like Article
Save Article
Similar Reads