Additive Congruence method for generating Pseudo Random Numbers

Additive Congruential Method is a type of linear congruential generator for generating pseudorandom numbers in a specific range. This method can be defined as: 

X_{i + 1} = X_{i} + c \hspace{0.2cm} mod \hspace{0.2cm} m

where,  

X, the sequence of pseudo-random numbers
m ( > 0), the modulus
c [0, m), the increment
X0 [0, m), initial value of the sequence – termed as seed

m, c, X0 should be chosen appropriately to get a period almost equal to m.



 

Approach: 

  • Choose the seed value X0, modulus parameter m, and increment term c.
  • Initialize the required amount of random numbers to generate (say, an integer variable noOfRandomNums).
  • Define a storage to keep the genrated random numbers (here, vector is considered) of size noOfRandomNums.
  • Initialize the 0th index of the vector with the seed value.
  • For rest of indexes follow the Additive Congruential Method to generate the random numbers.

randomNums[i] = (randomNums[i – 1] + c) % m 

Finally, return the generated random numbers.

Below is the implementation of the above approach: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the
// above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to generate random numbers
void additiveCongruentialMethod(
    int Xo, int m, int c,
    vector<int>& randomNums,
    int noOfRandomNums)
{
  
    // Initialize the seed state
    randomNums[0] = Xo;
  
    // Traverse to generate required
    // numbers of random numbers
    for (int i = 1; i < noOfRandomNums; i++) {
  
        // Follow the additive
        // congruential method
        randomNums[i]
            = (randomNums[i - 1] + c)
              % m;
    }
}
  
// Driver Code
int main()
{
    int Xo = 3; // seed value
    int m = 15; // modulus parameter
    int c = 2; // increment term
  
    // Number of Random numbers
    // to be generated
    int noOfRandomNums = 20;
  
    // To store random numbers
    vector<int> randomNums(noOfRandomNums);
  
    // Function Call
    additiveCongruentialMethod(
Xo, m, c,
                               randomNums,
 noOfRandomNums);
  
    // Print the generated random numbers
    for (int i = 0; i < noOfRandomNums; i++) {
        cout << randomNums[i] << " ";
    }
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the
// above approach
class GFG{
  
// Function to generate random numbers
static void additiveCongruentialMethod(
    int Xo, int m, int c,
    int []randomNums,
    int noOfRandomNums)
{
  
    // Initialize the seed state
    randomNums[0] = Xo;
  
    // Traverse to generate required
    // numbers of random numbers
    for(int i = 1; i < noOfRandomNums; i++) 
    {
  
        // Follow the additive
        // congruential method
        randomNums[i] = (randomNums[i - 1] + c) % m;
    }
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Seed value
    int Xo = 3
      
    // Modulus parameter
    int m = 15
      
    // Increment term
    int c = 2
  
    // Number of Random numbers
    // to be generated
    int noOfRandomNums = 20;
  
    // To store random numbers
    int []randomNums = new int[noOfRandomNums];
  
    // Function Call
    additiveCongruentialMethod(Xo, m, c,
                               randomNums,
                               noOfRandomNums);
  
    // Print the generated random numbers
    for(int i = 0; i < noOfRandomNums; i++)
    {
        System.out.print(randomNums[i] + " ");
    }
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the
# above approach
  
# Function to generate random numbers
def additiveCongruentialMethod(Xo, m, c, 
                               randomNums, 
                               noOfRandomNums):
  
    # Initialize the seed state
    randomNums[0] = Xo
  
    # Traverse to generate required
    # numbers of random numbers
    for i in range(1, noOfRandomNums):
          
        # Follow the linear congruential method
        randomNums[i] = (randomNums[i - 1] + c) % m
  
# Driver Code
if __name__ == '__main__':
      
    # Seed value
    Xo = 3
      
    # Modulus parameter
    m = 15 
      
    # Multiplier term
    c = 2 
  
    # Number of Random numbers
    # to be generated
    noOfRandomNums = 20
  
    # To store random numbers
    randomNums=[0] * (noOfRandomNums)
  
    # Function Call
    additiveCongruentialMethod(Xo, m, c, 
                               randomNums, 
                               noOfRandomNums)
  
    # Print the generated random numbers
    for i in randomNums:
        print(i, end = " ")
  
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the
// above approach
using System;
  
class GFG{
  
// Function to generate random numbers
static void additiveCongruentialMethod(
    int Xo, int m, int c,
    int []randomNums,
    int noOfRandomNums)
{
  
    // Initialize the seed state
    randomNums[0] = Xo;
  
    // Traverse to generate required
    // numbers of random numbers
    for(int i = 1; i < noOfRandomNums; i++) 
    {
  
        // Follow the additive
        // congruential method
        randomNums[i] = (randomNums[i - 1] + c) % m;
    }
}
  
// Driver Code
public static void Main(String[] args)
{
      
    // Seed value
    int Xo = 3; 
      
    // Modulus parameter
    int m = 15; 
      
    // Increment term
    int c = 2; 
  
    // Number of Random numbers
    // to be generated
    int noOfRandomNums = 20;
  
    // To store random numbers
    int []randomNums = new int[noOfRandomNums];
  
    // Function call
    additiveCongruentialMethod(Xo, m, c,
                               randomNums,
                               noOfRandomNums);
  
    // Print the generated random numbers
    for(int i = 0; i < noOfRandomNums; i++)
    {
        Console.Write(randomNums[i] + " ");
    }
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Output: 

3 5 7 9 11 13 0 2 4 6 8 10 12 14 1 3 5 7 9 11

The literal meaning of pseudo is false. These random numbers are called pseudo because some known arithmetic procedure is utilized to generate. Even the generated sequence forms a pattern hence the generated number seems to be random but may not be truly random.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.