Given a linked list which represents an integer number where every node is a digit if the represented integer. The task is to add a given digit N to the represented integer.
Examples:
Input: 9 -> 9 -> 3 -> NULL, N = 7
Output:
9 -> 9 -> 3 -> NULL
1 -> 0 -> 0 -> 0 -> NULLInput: 2 -> 9 -> 9 -> NULL, N = 5
Output:
2 -> 9 -> 9 -> NULL
3 -> 0 -> 4 -> NULL
Approach: We have already discussed the approach for adding 1 to a number stored in linked list int this article but the code requires reversal of the linked list.
In this post, we have extended the problem to adding any digit to the number stored in a linked list and achieving the same without reversal or recursion.
The idea is to traverse the list and while traversing maintain a pointer to the last node whose value is less than 9. This is because we are adding a single digit to the number stored in the linked list. So, the maximum value of carry (if present) can be 1. Suppose we start propagating the carry from the least significant digit towards most significant digit, then the propagation will stop as soon as it finds a number less than 9.
After the complete traversal of the list in this manner, we have finally reached the last node of the linked list and also maintained a pointer to the latest node whose value is less than 9.
Two cases can arise:
- There can be overflow after adding the number in the last digit i.e. value at the node is greater than 9.
- No overflow i.e. after adding the value at the node is less than 10.
In the first case, we have to propagate the carry from the latest node whose value is less than 9 to the last node.
In the second case, we don’t have to do anything else.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <iostream> using namespace std; // Node structure containing data // and pointer to the next Node struct node { int key; node* next; node( int n) { key = n; next = NULL; } }; // Linked list class class LinkedList { node* head; public : // Default constructor for // creating empty list LinkedList(); // Insert a node in linked list void insert(node* n); // Adding a single digit to the list void addDigit( int n); // Print the linked list void printList(); }; LinkedList::LinkedList() { // Empty List head = NULL; } // Function to insert a node at the // head of the linked list void LinkedList::insert(node* n) { // Empty List if (head == NULL) head = n; // Insert in the beginning of the list else { n->next = head; head = n; } } // Function to print the linked list void LinkedList::printList() { node* ptr = head; while (ptr) { cout << ptr->key << " -> " ; ptr = ptr->next; } cout << "NULL" << endl; } // Function to add a digit to the integer // represented as a linked list void LinkedList::addDigit( int n) { // To keep track of the last node // whose value is less than 9 node* lastNode = NULL; node* curr = head; while (curr->next) { // If found a node with value // less than 9 if (curr->key < 9) lastNode = curr; // Otherwise keep traversing // the list till end curr = curr->next; } // Add the given digit to the last node curr->key = curr->key + n; // In case of overflow in the last node if (curr->key > 9) { curr->key = curr->key % 10; // If the list is of the // form 9 -> 9 -> 9 -> ... if (lastNode == NULL) { // Insert a node at the beginnig as // there would be overflow in the // head in this case insert( new node(1)); // Adjust the lastNode pointer to // propagate the carry effect to // all the nodes of the list lastNode = head->next; } // Forward propagate carry effect while (lastNode != curr) { lastNode->key = (lastNode->key + 1) % 10; lastNode = lastNode->next; } } } // Driver code int main() { // Creating the linked list LinkedList* l1 = new LinkedList(); // Adding elements to the linked list l1->insert( new node(9)); l1->insert( new node(9)); l1->insert( new node(1)); // Printing the original list l1->printList(); // Adding the digit l1->addDigit(5); // Printing the modified list l1->printList(); return 0; } |
Java
// Java implementation of the approach // Node structure containing data // and pointer to the next Node class node { int key; node next; node( int n) { key = n; next = null ; } }; // Linked list class class LinkedList { static node head; // Default constructor for // creating empty list public LinkedList() { // Empty List head = null ; } // Function to insert a node at the // head of the linked list void insert(node n) { // Empty List if (head == null ) head = n; // Insert in the beginning of the list else { n.next = head; head = n; } } // Function to print the linked list void printList() { node ptr = head; while (ptr != null ) { System.out.print(ptr.key + "->" ); ptr = ptr.next; } System.out.print( "null" + "\n" ); } // Function to add a digit to the integer // represented as a linked list void addDigit( int n) { // To keep track of the last node // whose value is less than 9 node lastNode = null ; node curr = head; while (curr.next != null ) { // If found a node with value // less than 9 if (curr.key < 9 ) lastNode = curr; // Otherwise keep traversing // the list till end curr = curr.next; } // Add the given digit to the last node curr.key = curr.key + n; // In case of overflow in the last node if (curr.key > 9 ) { curr.key = curr.key % 10 ; // If the list is of the // form 9.9.9.... if (lastNode == null ) { // Insert a node at the beginnig as // there would be overflow in the // head in this case insert( new node( 1 )); // Adjust the lastNode pointer to // propagate the carry effect to // all the nodes of the list lastNode = head.next; } // Forward propagate carry effect while (lastNode != curr) { lastNode.key = (lastNode.key + 1 ) % 10 ; lastNode = lastNode.next; } } } // Driver code public static void main(String[] args) { // Creating the linked list LinkedList l1 = new LinkedList(); // Adding elements to the linked list l1.insert( new node( 9 )); l1.insert( new node( 9 )); l1.insert( new node( 1 )); // Printing the original list l1.printList(); // Adding the digit l1.addDigit( 5 ); // Printing the modified list l1.printList(); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach # Node structure containing data # and pointer to the next Node class node: def __init__( self , key): self .key = key self . next = None # Linked list class class LinkedList: def __init__( self ): self .head = None # Function to insert a node at the # head of the linked list def insert( self , n): # Empty List if ( self .head = = None ): self .head = n # Insert in the beginning of the list else : n. next = self .head; self .head = n # Function to print the linked list def printList( self ): ptr = self .head while (ptr ! = None ): print (ptr.key, end = ' -> ' ) ptr = ptr. next print ( 'NULL' ) # Function to add a digit to the integer # represented as a linked list def addDigit( self , n): # To keep track of the last node # whose value is less than 9 lastNode = None curr = self .head while (curr. next ! = None ): # If found a node with value # less than 9 if (curr.key < 9 ): lastNode = curr # Otherwise keep traversing # the list till end curr = curr. next # Add the given digit to the last node curr.key = curr.key + n # In case of overflow in the last node if (curr.key > 9 ): curr.key = curr.key % 10 # If the list is of the # form 9 . 9 . 9 . ... if (lastNode = = None ): # Insert a node at the beginnig as # there would be overflow in the # self.head in this case self .insert(node( 1 )) # Adjust the lastNode pointer to # propagate the carry effect to # all the nodes of the list lastNode = self .head. next # Forward propagate carry effect while (lastNode ! = curr): lastNode.key = (lastNode.key + 1 ) % 10 lastNode = lastNode. next # Driver code if __name__ = = '__main__' : # Creating the linked list l1 = LinkedList() # Adding elements to the linked list l1.insert(node( 9 )) l1.insert(node( 9 )) l1.insert(node( 1 )) # Printing the original list l1.printList() # Adding the digit l1.addDigit( 5 ) # Printing the modified list l1.printList() # This code is contributed by rutvik_56 |
C#
// C# implementation of the approach using System; // Node structure containing data // and pointer to the next Node public class node { public int key; public node next; public node( int n) { key = n; next = null ; } }; // Linked list class public class List { static node head; // Default constructor for // creating empty list public List() { // Empty List head = null ; } // Function to insert a node at the // head of the linked list void insert(node n) { // Empty List if (head == null ) head = n; // Insert in the beginning of the list else { n.next = head; head = n; } } // Function to print the linked list void printList() { node ptr = head; while (ptr != null ) { Console.Write(ptr.key + "->" ); ptr = ptr.next; } Console.Write( "null" + "\n" ); } // Function to add a digit to the integer // represented as a linked list void addDigit( int n) { // To keep track of the last node // whose value is less than 9 node lastNode = null ; node curr = head; while (curr.next != null ) { // If found a node with value // less than 9 if (curr.key < 9) lastNode = curr; // Otherwise keep traversing // the list till end curr = curr.next; } // Add the given digit to the last node curr.key = curr.key + n; // In case of overflow in the last node if (curr.key > 9) { curr.key = curr.key % 10; // If the list is of the // form 9.9.9.... if (lastNode == null ) { // Insert a node at the beginnig as // there would be overflow in the // head in this case insert( new node(1)); // Adjust the lastNode pointer to // propagate the carry effect to // all the nodes of the list lastNode = head.next; } // Forward propagate carry effect while (lastNode != curr) { lastNode.key = (lastNode.key + 1) % 10; lastNode = lastNode.next; } } } // Driver code public static void Main(String[] args) { // Creating the linked list List l1 = new List(); // Adding elements to the linked list l1.insert( new node(9)); l1.insert( new node(9)); l1.insert( new node(1)); // Printing the original list l1.printList(); // Adding the digit l1.addDigit(5); // Printing the modified list l1.printList(); } } // This code is contributed by 29AjayKumar |
1 -> 9 -> 9 -> NULL 2 -> 0 -> 4 -> NULL
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.