Add N digits to A such that it is divisible by B after each addition

Given three integers A, B and N, repeat the following process N times:

  1. Add a digit to A such that after adding it, A is divisible by B.
  2. Print the smallest value of A possible after N iterations of above above operation.
  3. Print -1 if the operation fails.

Note : We need to check divisibility after every digit addition.

Examples:



Input: A = 10, B = 11, N = 1
Output: -1
No matter what digit you add, 10X will never be divisible by 11.

Input: A = 5, B = 3, N = 3
Output: 5100

Approach: Bruteforce for the first digit to be added from 0 to 9, if none of the digits make A divisible by B then the answer is -1. Otherwise add the first digit that satisfies the condition and then add 0 after that (n-1) times because if A is divisible by B then A*10, A*100, … will also be divisible by B.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
int addNDigits(int a, int b, int n)
{
    int num = a;
  
    // Try all digits from (0 to 9)
    for (int i = 0; i <= 9; i++) {
        int tmp = a * 10 + i;
        if (tmp % b == 0) {
            a = tmp;
            break;
        }
    }
  
    // Fails in the first move itself
    if (num == a)
        return -1;
  
    // Add (n-1) 0's
    for (int j = 0; j < n - 1; j++)
        a *= 10;
  
    return a;
}
  
// Driver Program to test above function
int main()
{
    int a = 5, b = 3, n = 3;
    cout << addNDigits(a, b, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

  //Java implementation of the approach
  
import java.io.*;
  
class GFG {
  
  
static int addNDigits(int a, int b, int n)
{
    int num = a;
  
    // Try all digits from (0 to 9)
    for (int i = 0; i <= 9; i++) {
        int tmp = a * 10 + i;
        if (tmp % b == 0) {
            a = tmp;
            break;
        }
    }
  
    // Fails in the first move itself
    if (num == a)
        return -1;
  
    // Add (n-1) 0's
    for (int j = 0; j < n - 1; j++)
        a *= 10;
  
    return a;
}
  
// Driver Program to test above function
  
    public static void main (String[] args) {
    int a = 5, b = 3, n = 3;
    System.out.print( addNDigits(a, b, n));
    }
}
// This code is contributed by anuj_67..

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
def addNDigits(a, b, n) :
  
    num = a
      
    # Try all digits from (0 to 9)
    for i in range(10) :
        tmp = a * 10 + i
          
        if (tmp % b == 0) :
            a = tmp
            break
          
    # Fails in the first move itself
    if (num == a) :
        return -1
  
    # Add (n-1) 0's
    for j in range(n - 1) :
        a *= 10
  
    return a
  
# Driver Code
if __name__ == "__main__" :
      
    a = 5
    b = 3
    n = 3
  
    print(addNDigits(a, b, n))
  
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG 
{
  
static int addNDigits(int a, 
                      int b, int n)
{
    int num = a;
  
    // Try all digits from (0 to 9)
    for (int i = 0; i <= 9; i++)
    {
        int tmp = a * 10 + i;
        if (tmp % b == 0) 
        {
            a = tmp;
            break;
        }
    }
  
    // Fails in the first move itself
    if (num == a)
        return -1;
  
    // Add (n-1) 0's
    for (int j = 0; j < n - 1; j++)
        a *= 10;
  
    return a;
}
  
// Driver Code
public static void Main () 
{
    int a = 5, b = 3, n = 3;
    Console.WriteLine(addNDigits(a, b, n));
}
}
  
// This code is contributed 
// by anuj_67..

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
function addNDigits($a, $b, $n)
{
    $num = $a;
  
    // Try all digits from (0 to 9)
    for ($i = 0; $i <= 9; $i++) 
    {
        $tmp = $a * 10 + $i;
        if ($tmp % $b == 0) 
        {
            $a = $tmp;
            break;
        }
    }
  
    // Fails in the first move itself
    if ($num == $a)
        return -1;
  
    // Add (n-1) 0's
    for ($j = 0; $j < $n - 1; $j++)
        $a *= 10;
  
    return $a;
}
  
// Driver Code
$a = 5; $b = 3; $n = 3;
echo addNDigits($a, $b, $n);
  
// This code is contributed
// by Akanksha Rai

chevron_right


Output:

5100


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, Akanksha_Rai, AnkitRai01