Skip to content
Related Articles

Related Articles

Improve Article
Add multiple columns to dataframe in Pandas
  • Last Updated : 01 Aug, 2020

In Pandas, we have the freedom to add columns in the data frame whenever needed. There are multiple ways to add columns to the Pandas data frame. 

Method 1: Add multiple columns to a data frame using Lists

Python3




# importing pandas library
import pandas as pd
  
# creating and initializing a nested list
students = [['jackma', 34, 'Sydeny', 'Australia'],
            ['Ritika', 30, 'Delhi', 'India'],
            ['Vansh', 31, 'Delhi', 'India'],
            ['Nany', 32, 'Tokyo', 'Japan'],
            ['May', 16, 'New York', 'US'],
            ['Michael', 17, 'las vegas', 'US']]
  
# Create a DataFrame object
df = pd.DataFrame(students,
                  columns=['Name', 'Age', 'City', 'Country'],
                  index=['a', 'b', 'c', 'd', 'e', 'f'])
  
# Creating 2 lists 'marks' and 'gender'
marks = [85.4,94.9,55.2,100.0,40.5,33.5]
gender = ['M','F','M','F','F','M']
  
# adding lists as new column to dataframe df
df['Uni_Marks'] = marks
df['Gender'] = gender
  
# Displaying the Data frame
df

Output :



Method 2: Add multiple columns to a data frame using  Dataframe.assign() method

Python3




# importing pandas library
import pandas as pd
  
# creating and initializing a nested list
students = [['jackma', 34, 'Sydeny', 'Australia'],
            ['Ritika', 30, 'Delhi', 'India'],
            ['Vansh', 31, 'Delhi', 'India'],
            ['Nany', 32, 'Tokyo', 'Japan'],
            ['May', 16, 'New York', 'US'],
            ['Michael', 17, 'las vegas', 'US']]
  
# Create a DataFrame object
df = pd.DataFrame(students,
                  columns=['Name', 'Age', 'City', 'Country'],
                  index=['a', 'b', 'c', 'd', 'e', 'f'])
  
# creating columns 'Admissionnum' and 'Percentage'
# using dataframe.assign() function
df = df.assign(Admissionnum=[250, 800, 1200, 300, 400, 700], 
               Percentage=['85%', '90%', '75%', '35%', '60%', '80%'])
  
# Displaying the Data frame
df

Output :

Method 3: Add multiple columns to a data frame using  Dataframe.insert() method

Python3




# importing pandas library
import pandas as pd
  
# creating and initializing a nested list
students = [['jackma', 34, 'Sydeny', 'Australia'],
            ['Ritika', 30, 'Delhi', 'India'],
            ['Vansh', 31, 'Delhi', 'India'],
            ['Nany', 32, 'Tokyo', 'Japan'],
            ['May', 16, 'New York', 'US'],
            ['Michael', 17, 'las vegas', 'US']]
  
# Create a DataFrame object
df = pd.DataFrame(students,
                  columns=['Name', 'Age', 'City', 'Country'],
                  index=['a', 'b', 'c', 'd', 'e', 'f'])
  
# creating columns 'Age' and 'ID' at 
# 2nd and 3rd position using 
# dataframe.insert() function
df.insert(2, "Marks", [90, 70, 45, 33, 88, 77], True)
df.insert(3, "ID", [101, 201, 401, 303, 202, 111], True)
  
  
# Displaying the Data frame
df

Output :

Method 4: Add multiple columns to a data frame using  Dictionary and zip()

Python3




# importing pandas library
import pandas as pd
  
# creating and initializing a nested list
students = [['jackma', 34, 'Sydeny', 'Australia'],
            ['Ritika', 30, 'Delhi', 'India'],
            ['Vansh', 31, 'Delhi', 'India'],
            ['Nany', 32, 'Tokyo', 'Japan'],
            ['May', 16, 'New York', 'US'],
            ['Michael', 17, 'las vegas', 'US']]
  
# Create a DataFrame object
df = pd.DataFrame(students,
                  columns=['Name', 'Age', 'City', 'Country'],
                  index=['a', 'b', 'c', 'd', 'e', 'f'])
  
# creating 2 lists 'ids' and 'marks'
ids = [11, 12, 13, 14, 15, 16]
marks=[85,41,77,57,20,95,96]
  
# Creating columns 'ID' and 'Uni_marks'  
# using Dictionary and zip() 
df['ID'] = dict(zip(ids, df['Name']))
df['Uni_Marks'] = dict(zip(marks, df['Name']))
    
# Displaying the Data frame
df

Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :