# Activation functions in Neural Networks

It is recommended to understand what is a neural network before reading this article. In The process of building a neural network, one of the choices you get to make is what activation function to use in the hidden layer as well as at the output layer of the network. This article discusses some of the choices.

**Elements of a Neural Network :- **

** Input Layer :- **This layer accepts input features. It provides information from the outside world to the network, no computation is performed at this layer, nodes here just pass on the information(features) to the hidden layer.

**Nodes of this layer are not exposed to the outer world, they are the part of the abstraction provided by any neural network. Hidden layer performs all sort of computation on the features entered through the input layer and transfer the result to the output layer.**

*Hidden Layer :-***This layer bring up the information learned by the network to the outer world.**

*Output Layer :-***What is an activation function and why to use them?**

**Definition of activation function:- **Activation function decides, whether a neuron should be activated or not by calculating weighted sum and further adding bias with it. The purpose of the activation function is to **introduce non-linearity** into the output of a neuron.

**Explanation :-**

We know, neural network has neurons that work in correspondence of *weight, bias* and their respective activation function. In a neural network, we would update the weights and biases of the neurons on the basis of the error at the output. This process is known as *back-propagation*. Activation functions make the back-propagation possible since the gradients are supplied along with the error to update the weights and biases.

**Why do we need Non-linear activation functions :-**

A neural network without an activation function is essentially just a linear regression model. The activation function does the non-linear transformation to the input making it capable to learn and perform more complex tasks.

**Mathematical proof :-**

*Suppose we have a Neural net like this :-*

**Elements of the diagram :-**

**Hidden layer i.e. layer 1 :-**

z(1) = W(1)X + b(1)

a(1) = z(1)

Here,

- z(1) is the vectorized output of layer 1
- W(1) be the vectorized weights assigned to neurons

of hidden layer i.e.w1, w2, w3 and w4- X be the vectorized input features i.e.
i1 and i2- b is the vectorized bias assigned to neurons in hidden

layer i.e.b1 and b2- a(1) is the vectorized form of any linear function.
(

Note:We are not considering activation function here)

**Layer 2 i.e. output layer :-**

//Note :Input for layer // 2 is output from layer 1 z(2) = W(2)a(1) + b(2) a(2) = z(2)

**Calculation at Output layer:**

// Putting value of z(1) here z(2) = (W(2) * [W(1)X + b(1)]) + b(2) z(2) = [W(2) * W(1)] * X + [W(2)*b(1) + b(2)] Let, [W(2) * W(1)] = W [W(2)*b(1) + b(2)] = b Final output : z(2) = W*X + b Which is again a linear function

This observation results again in a linear function even after applying a hidden layer, hence we can conclude that, doesn’t matter how many hidden layer we attach in neural net, all layers will behave same way because ** the composition of two linear function is a linear function itself**. Neuron can not learn with just a linear function attached to it. A non-linear activation function will let it learn as per the difference w.r.t error.

**Hence we need activation function.**

**VARIANTS OF ACTIVATION FUNCTION :- **

**1). Linear Function :- **

**Equation :**Linear function has the equation similar to as of a straight line i.e.**y = ax**- No matter how many layers we have, if all are linear in nature, the final activation function of last layer is nothing but just a linear function of the input of first layer.
**Range :**-inf to +inf**Uses :****Linear activation function**is used at just one place i.e. output layer.**Issues :**If we will differentiate linear function to bring non-linearity, result will no more depend on*input “x”*and function will become constant, it won’t introduce any ground-breaking behavior to our algorithm.

**For example :** Calculation of price of a house is a regression problem. House price may have any big/small value, so we can apply linear activation at output layer. Even in this case neural net must have any non-linear function at hidden layers.

**2). Sigmoid Function :- **

- It is a function which is plotted as
**‘S’**shaped graph. **Equation :**

A = 1/(1 + e^{-x})**Nature :**Non-linear. Notice that X values lies between -2 to 2, Y values are very steep. This means, small changes in x would also bring about large changes in the value of Y.**Value Range :**0 to 1**Uses :**Usually used in output layer of a binary classification, where result is either 0 or 1, as value for sigmoid function lies between 0 and 1 only so, result can be predicted easily to beif value is greater than**1****0.5**andotherwise.**0**

**3). Tanh Function :- **The activation that works almost always better than sigmoid function is Tanh function also knows as **Tangent Hyperbolic function**. It’s actually mathematically shifted version of the sigmoid function. Both are similar and can be derived from each other.

**Equation :-**

f(x) = tanh(x) = 2/(1 + e^{-2x}) - 1 OR tanh(x) = 2 * sigmoid(2x) - 1

**Value Range :-**-1 to +1**Nature :-**non-linear**Uses :-**Usually used in hidden layers of a neural network as it’s values lies between**-1 to 1**hence the mean for the hidden layer comes out be 0 or very close to it, hence helps in*centering the data*by bringing mean close to 0. This makes learning for the next layer much easier.**Equation :-**. It gives an output x if x is positive and 0 otherwise.**A(x) = max(0,x)****Value Range :-**[0, inf)**Nature :-**non-linear, which means we can easily backpropagate the errors and have multiple layers of neurons being activated by the ReLU function.**Uses :-**ReLu is less computationally expensive than tanh and sigmoid because it involves simpler mathematical operations. At a time only a few neurons are activated making the network sparse making it efficient and easy for computation.

**4). RELU :- **Stands for *Rectified linear unit*. It is the most widely used activation function. Chiefly implemented in *hidden layers* of Neural network.

In simple words, RELU learns *much faster* than sigmoid and Tanh function.

**5). Softmax Function :- **The softmax function is also a type of sigmoid function but is handy when we are trying to handle classification problems.

**Nature :-**non-linear**Uses :-**Usually used when trying to handle multiple classes. The softmax function would squeeze the outputs for each class between 0 and 1 and would also divide by the sum of the outputs.**Ouput:-**The softmax function is ideally used in the output layer of the classifier where we are actually trying to attain the probabilities to define the class of each input.- The basic rule of thumb is if you really don’t know what activation function to use, then simply use
*RELU*as it is a general activation function and is used in most cases these days. - If your output is for binary classification then,
*sigmoid function*is very natural choice for output layer.

**CHOOSING THE RIGHT ACTIVATION FUNCTION**

**Foot Note :-**

The **activation function** does the non-linear transformation to the input making it capable to learn and perform more complex tasks.

Reference :

Understanding Activation Functions in Neural Networks

## Recommended Posts:

- Activation Functions
- Recurrent Neural Networks Explanation
- Depth wise Separable Convolutional Neural Networks
- DeepPose: Human Pose Estimation via Deep Neural Networks
- Neural Network Advances
- Introduction to Recurrent Neural Network
- Introduction to Convolution Neural Network
- A single neuron neural network in Python
- Implementing Artificial Neural Network training process in Python
- Understanding of LSTM Networks
- 5G: The Future Of Wireless Networks?
- Appropriate usage of social networks
- Wi-Fi Password of All Connected Networks in Windows/Linux
- Long Short Term Memory Networks Explanation
- Excel VBA | sum() functions

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.