Prerequisite: Bitset function in STL library
Given a number N, the task is to find the absolute difference of the number of set and unset bits of this given number.
Examples:
Input: N = 14
Output: 2
Explanation:
Binary representation of 14 is “1110”.
Here the number of set bits is 3 and the number of unset bits is 1.
Therefore, the absolute difference is 2.
Input: N = 56
Output: 0
Explanation:
Binary representation of 56 is “110100”.
Here the number of set bits is 3 and the number of unset bits is 3.
Therefore, the absolute difference 0.
Approach:
- Count the total number of bits in the binary representation of the given number.
- Use bitset function defined in the STL library, to count the number of set bits efficiently.
- Then, we will subtract the set bits from the total number of bits to get the number of unset bits.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
const int sz = 64;
int totalbits( int N)
{
return ( int )(1 + log2(N));
}
int absoluteDifference( int N)
{
bitset<sz> arr(N);
int total_bits = totalbits(N);
int set_bits = arr.count();
int unset_bits = total_bits
- set_bits;
int ans = abs (set_bits
- unset_bits);
return ans;
}
int main()
{
int N = 14;
cout << absoluteDifference(N);
return 0;
}
|
Java
import java.util.*;
class GFG{
static final int sz = 64 ;
static int totalbits( int N)
{
return ( 1 + ( int )(Math.log(N) /
Math.log( 2 )));
}
static int absoluteDifference( int N)
{
int arr = N;
int total_bits = totalbits(N);
int set_bits = countSetBits(arr);
int unset_bits = total_bits - set_bits;
int ans = Math.abs(set_bits - unset_bits);
return ans;
}
static int countSetBits( int n)
{
int count = 0 ;
while (n > 0 )
{
n &= (n - 1 );
count++;
}
return count;
}
public static void main(String[] args)
{
int N = 14 ;
System.out.println(absoluteDifference(N));
}
}
|
Python3
import math
sz = 64
def totalbits(N) :
return ( 1 + ( int )(math.log(N) / math.log( 2 )))
def absoluteDifference(N) :
arr = N
total_bits = totalbits(N)
set_bits = countSetBits(arr)
unset_bits = total_bits - set_bits
ans = abs (set_bits - unset_bits)
return ans
def countSetBits(n) :
count = 0
while (n > 0 ) :
n = n & (n - 1 )
count + = 1
return count
N = 14
print (absoluteDifference(N))
|
C#
using System;
class GFG{
static int totalbits( int N)
{
return (1 + ( int )(Math.Log(N) /
Math.Log(2)));
}
static int absoluteDifference( int N)
{
int arr = N;
int total_bits = totalbits(N);
int set_bits = countSetBits(arr);
int unset_bits = total_bits - set_bits;
int ans = Math.Abs(set_bits - unset_bits);
return ans;
}
static int countSetBits( int n)
{
int count = 0;
while (n > 0)
{
n &= (n - 1);
count++;
}
return count;
}
static void Main() {
int N = 14;
Console.WriteLine(absoluteDifference(N));
}
}
|
Javascript
<script>
function totalbits(N)
{
return (1 + parseInt(Math.log(N) / Math.log(2), 10));
}
function absoluteDifference(N)
{
let arr = N;
let total_bits = totalbits(N);
let set_bits = countSetBits(arr);
let unset_bits = total_bits - set_bits;
let ans = Math.abs(set_bits - unset_bits);
return ans;
}
function countSetBits(n)
{
let count = 0;
while (n > 0)
{
n &= (n - 1);
count++;
}
return count;
}
let N = 14;
document.write(absoluteDifference(N));
</script>
|
Time Complexity: O(log N)
Auxiliary Space: O(1) as constant space for variables and bitset arr is used
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
23 Apr, 2023
Like Article
Save Article