Skip to content
Related Articles

Related Articles

3D Scatter Plot using graph_objects Class in Plotly-Python
  • Last Updated : 10 Jul, 2020

Plotly is a Python library that is used to design graphs, especially interactive graphs. It can plot various graphs and charts like histogram, barplot, boxplot, spreadplot, and many more. It is mainly used in data analysis as well as financial analysis. plotly is an interactive visualization library.

Scatter plot using graph_objects class

If a plotly express does not provide a good starting point, then it is possible to use go.Scatter3D class from plotly.graph_objects. Scatter plot are those charts in which data points are represented horizontally and on the vertical axis to show how one variable affect on another variable. The mode of the property decides the appearance of data points.

Syntax: plotly.graph_objects.Scatter3d(arg=None, connectgaps=None, customdata=None, customdatasrc=None, error_x=None, error_y=None, error_z=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, legendgroup=None, line=None, marker=None, meta=None, metasrc=None, mode=None, name=None, opacity=None, projection=None, scene=None, showlegend=None, stream=None, surfaceaxis=None, surfacecolor=None, text=None, textfont=None, textposition=None, textpositionsrc=None, textsrc=None, texttemplate=None, texttemplatesrc=None, uid=None, uirevision=None, visible=None, x=None, xcalendar=None, xsrc=None, y=None, ycalendar=None, ysrc=None, z=None, zcalendar=None, zsrc=None, **kwargs)

Parameters:

x – Sets the x coordinates.



y – Sets the y coordinates.

z – Sets the z coordinates.

mode – Determines the drawing mode for this scatter trace.

Example 1:

Python3




import plotly.express as px
import plotly.graph_objects as go
  
df = px.data.tips()
  
fig = go.Figure(data =[go.Scatter3d(x = df['total_bill'],
                                   y = df['time'],
                                   z = df['tip'],
                                   mode ='markers')])
fig.show()

Output:

Example 2:



Python3




import plotly.express as px
import plotly.graph_objects as go
  
df = px.data.iris()
  
fig = go.Figure(data =[go.Scatter3d(x = df['sepal_width'],
                                   y = df['sepal_length'],
                                   z = df['petal_length'],
                                   mode ='markers')])
fig.show()

Output:

Presenting 3D Scatter Plot with Color scaling and Marker Styling

In plotly, color scaling and marker styling are a way to represent the data more effectively, and it makes data more understandable. 

Example 1:

Python3




import plotly.express as px
import plotly.graph_objects as go
  
df = px.data.iris()
  
fig = go.Figure(data =[go.Scatter3d(x = df['sepal_width'],
                                   y = df['sepal_length'],
                                   z = df['petal_length'],
                                   mode ='markers'
                                   marker = dict(
                                     size = 12,
                                     color = df['petal_width'],
                                     colorscale ='Viridis',
                                     opacity = 0.8
                                   )
)])
  
fig.show()

Output:

Example 2:

Python3




import plotly.express as px
import plotly.graph_objects as go
  
df = px.data.tips()
  
fig = go.Figure(data =[go.Scatter3d(x = df['total_bill'],
                                   y = df['time'],
                                   z = df['day'],
                                   mode ='markers',
                                   marker = dict(
                                     color = df['tip'],
                                     colorscale ='Viridis',
                                     opacity = 0.5
                                   )
)])
fig.show()

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :