Time Complexity of Loop with Powers

What is the time complexity of below function?

void fun(int n, int k)
{
    for (int i=1; i<=n; i++)
    {
      int p = pow(i, k); 
      for (int j=1; j<=p; j++)
      {
          // Some O(1) work
      }
    }
}

Time complexity of above function can be written as 1k + 2k + 3k + … n1k.

Let us try few examples:

k=1
Sum = 1 + 2 + 3 ... n 
    = n(n+1)/2 
    = n2 + n/2

k=2
Sum = 12 + 22 + 32 + ... n12.
    = n(n+1)(2n+1)/6
    = n3/3 + n2/2 + n/6

k=3
Sum = 13 + 23 + 33 + ... n13.
    = n2(n+1)2/4
    = n4/4 + n3/2 + n2/4     

In general, asymptotic value can be written as (nk+1)/(k+1) + Θ(nk)

Note that, in asymptotic notations like Θ we can always ignore lower order terms. So the time complexity is Θ(nk+1 / (k+1))

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

GATE CS Corner    Company Wise Coding Practice





Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.