Open In App

Print the path common to the two paths from the root to the two given nodes

Improve
Improve
Like Article
Like
Save
Share
Report

Given a binary tree with distinct nodes(no two nodes have the same data values). The problem is to print the path common to the two paths from the root to the two given nodes n1 and n2. If either of the nodes are not present then print “No Common Path”. 

Examples: 

Input :          1
               /   \
              2     3
             / \   /  \
            4   5  6   7
               /    \   
              8      9

          n1 = 4, n2 = 8

Output : 1->2
Path form root to n1:
1->2->4

Path form root to n2:
1->2->5->8

Common Path:
1->2

Approach:The following steps are: 

  1. Find the LCA(Lowest Common Ancestor) of the two nodes n1 and n2. Refer this.
  2. If LCA exits then print the path from the root to LCA. Refer this. Else print “No Common Path”. 

Follow the below algorithm:

  • Define a function findLCAUtil() that finds the lowest common ancestor (LCA) of two given nodes in the binary tree. This function takes four parameters:
                   a. root: A pointer to the root node of the binary tree.
                   b. n1: The value of the first node whose LCA is to be found.
                   c. n2: The value of the second node whose LCA is to be found.
                   d. v1: A boolean variable that is set to true if the first node is found.
                   e. v2: A boolean variable that is set to true if the second node is found.
  • The function returns a pointer to the LCA of the two nodes, if it exists. Otherwise, it returns NULL.
  • Define a function find() that checks if a given value is present in a binary tree. This function takes two parameters:
                  a. root: A pointer to the root node of the binary tree.
                  b. k: The value to be searched in the binary tree.
  • The function returns true if the value is present in the binary tree, false otherwise.
  • Define a function findLCA() that finds the LCA of two given nodes in the binary tree. This function takes three parameters:
                 a. root: A pointer to the root node of the binary tree.
                 b. n1: The value of the first node whose LCA is to be found.
                 c. n2: The value of the second node whose LCA is to be found.
  • The function returns a pointer to the LCA of the two nodes, if both nodes are present in the binary tree. Otherwise, it returns NULL.
  • Define a function hasPath() that checks if there is a path from the root to a given node in the binary tree. This function takes three parameters:
                 a. root: A pointer to the root node of the binary tree.
                 b. arr: A vector to store the path from the root to the given node.
                 c. x: The value of the node whose path is to be found.
  • The function returns true if there is a path from the root to the given node. It also populates the vector arr with the path from the root to the given node.
  • Define a function printCommonPath() that prints the path common to the two paths from the root to the two given nodes in the binary tree. This function takes three parameters:
                a. root: A pointer to the root node of the binary tree.
                b. n1: The value of the first node whose path is to be found.
                c. n2: The value of the second node whose path is to be found.
  • The function first finds the LCA of the two nodes using the findLCA() function. If the LCA exists, it then finds the path from the root to the LCA using the hasPath() function. Finally, it prints the common path from the root to the LCA.

Implementation:

C++




// C++ implementation to print the path common to the
// two paths from the root to the two given nodes
#include <bits/stdc++.h>
 
using namespace std;
 
// structure of a node of binary tree
struct Node
{
    int data;
    Node *left, *right;
};
 
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct Node* getNode(int data)
{
    struct Node *newNode = (struct Node*)malloc(sizeof(struct Node));
    newNode->data = data;
    newNode->left = newNode->right = NULL;
    return newNode;
}
 
// This function returns pointer to LCA of two given values n1 and n2.
// v1 is set as true by this function if n1 is found
// v2 is set as true by this function if n2 is found
struct Node *findLCAUtil(struct Node* root, int n1, int n2, bool &v1, bool &v2)
{
    // Base case
    if (root == NULL) return NULL;
  
    // If either n1 or n2 matches with root's data, report the presence
    // by setting v1 or v2 as true and return root (Note that if a key
    // is ancestor of other, then the ancestor key becomes LCA)
    if (root->data == n1)
    {
        v1 = true;
        return root;
    }
    if (root->data == n2)
    {
        v2 = true;
        return root;
    }
  
    // Look for nodes in left and right subtrees
    Node *left_lca  = findLCAUtil(root->left, n1, n2, v1, v2);
    Node *right_lca = findLCAUtil(root->right, n1, n2, v1, v2);
  
    // If both of the above calls return Non-NULL, then one node
    // is present in one subtree and other is present in other,
    // So this current node is the LCA
    if (left_lca && right_lca)  return root;
  
    // Otherwise check if left subtree or right subtree is LCA
    return (left_lca != NULL)? left_lca: right_lca;
}
 
// Returns true if key k is present in tree rooted with root
bool find(Node *root, int k)
{
    // Base Case
    if (root == NULL)
        return false;
  
    // If key k is present at root, or in left subtree
    // or right subtree, return true
    if (root->data == k || find(root->left, k) ||  find(root->right, k))
        return true;
  
    // Else return false
    return false;
}
 
// This function returns LCA of n1 and n2 only if both n1 and n2
// are present in tree, otherwise returns NULL
Node *findLCA(Node *root, int n1, int n2)
{
    // Initialize n1 and n2 as not visited
    bool v1 = false, v2 = false;
  
    // Find lca of n1 and n2
    Node *lca = findLCAUtil(root, n1, n2, v1, v2);
  
    // Return LCA only if both n1 and n2 are present in tree
    if (v1 && v2 || v1 && find(lca, n2) || v2 && find(lca, n1))
        return lca;
  
    // Else return NULL
    return NULL;
}
 
// function returns true if
// there is a path from root to
// the given node. It also populates
// 'arr' with the given path
bool hasPath(Node *root, vector<int>& arr, int x)
{
    // if root is NULL
    // there is no path
    if (!root)
        return false;
     
    // push the node's value in 'arr'
    arr.push_back(root->data);   
     
    // if it is the required node
    // return true
    if (root->data == x)   
        return true;
     
    // else check whether there    the required node lies in the
    // left subtree or right subtree of the current node
    if (hasPath(root->left, arr, x) ||
        hasPath(root->right, arr, x))
        return true;
     
    // required node does not lie either in the
    // left or right subtree of the current node
    // Thus, remove current node's value from 'arr'
    // and then return false;   
    arr.pop_back();
    return false;           
}
 
// function to print the path common
// to the two paths from the root
// to the two given nodes if the nodes
// lie in the binary tree
void printCommonPath(Node *root, int n1, int n2)
{
    // vector to store the common path
    vector<int> arr;
     
    // LCA of node n1 and n2
    Node *lca = findLCA(root, n1, n2);
     
    // if LCA of both n1 and n2 exists
    if (lca)
    {
        // then print the path from root to
        // LCA node
        if (hasPath(root, arr, lca->data))
        {
            for (int i=0; i<arr.size()-1; i++)   
                cout << arr[i] << "->";
            cout << arr[arr.size() - 1];   
        }   
    }
     
    // LCA is not present in the binary tree
    // either n1 or n2 or both are not present
    else
        cout << "No Common Path";
}
 
// Driver program to test above
int main()
{
    // binary tree formation
    struct Node *root = getNode(1);
    root->left = getNode(2);
    root->right = getNode(3);
    root->left->left = getNode(4);
    root->left->right = getNode(5);
    root->right->left = getNode(6);
    root->right->right = getNode(7);
    root->left->right->left = getNode(8);
    root->right->left->right = getNode(9);
         
    int n1 = 4, n2 = 8;
    printCommonPath(root, n1, n2);
    return 0;
}


Java




// Java implementation to print the path common to the 
// two paths from the root to the two given nodes
import java.util.ArrayList;
public class PrintCommonPath {
 
    // Initialize n1 and n2 as not visited
    static boolean v1 = false, v2 = false;
 
    // This function returns pointer to LCA of two given
    // values n1 and n2. This function assumes that n1 and
    // n2 are present in Binary Tree
    static Node findLCAUtil(Node node, int n1, int n2)
    {
        // Base case
        if (node == null)
            return null;
           
        //Store result in temp, in case of key match so that we can search for other key also.
        Node temp=null;
   
        // If either n1 or n2 matches with root's key, report the presence
        // by setting v1 or v2 as true and return root (Note that if a key
        // is ancestor of other, then the ancestor key becomes LCA)
        if (node.data == n1)
        {
            v1 = true;
            temp = node;
        }
        if (node.data == n2)
        {
            v2 = true;
            temp = node;
        }
   
        // Look for keys in left and right subtrees
        Node left_lca = findLCAUtil(node.left, n1, n2);
        Node right_lca = findLCAUtil(node.right, n1, n2);
   
        if (temp != null)
            return temp;
   
        // If both of the above calls return Non-NULL, then one key
        // is present in once subtree and other is present in other,
        // So this node is the LCA
        if (left_lca != null && right_lca != null)
            return node;
   
        // Otherwise check if left subtree or right subtree is LCA
        return (left_lca != null) ? left_lca : right_lca;
    }
 
    // Returns true if key k is present in tree rooted with root
    static boolean find(Node root, int k)
    {
        // Base Case
        if (root == null)
            return false;
    
        // If key k is present at root, or in left subtree 
        // or right subtree, return true
        if (root.data == k || find(root.left, k) ||  find(root.right, k))
            return true;
    
        // Else return false
        return false;
    }
 
    // This function returns LCA of n1 and n2 only if both n1 and n2 
    // are present in tree, otherwise returns null
    static Node findLCA(Node root, int n1, int n2)
    {
        // Find lca of n1 and n2
        Node lca = findLCAUtil(root, n1, n2);
    
        // Return LCA only if both n1 and n2 are present in tree
        if (v1 && v2 || v1 && find(lca, n2) || v2 && find(lca, n1))
            return lca;
    
        // Else return null
        return null;
    }
 
    // function returns true if 
    // there is a path from root to 
    // the given node. It also populates 
    // 'arr' with the given path
    static boolean hasPath(Node root, ArrayList<Integer> arr, int x)
    {
        // if root is null
        // there is no path
        if (root==null)
            return false;
       
        // push the node's value in 'arr'
        arr.add(root.data);    
       
        // if it is the required node
        // return true
        if (root.data == x)    
            return true;
       
        // else check whether there    the required node lies in the
        // left subtree or right subtree of the current node
        if (hasPath(root.left, arr, x) ||
            hasPath(root.right, arr, x))
            return true;
       
        // required node does not lie either in the 
        // left or right subtree of the current node
        // Thus, remove current node's value from 'arr'
        // and then return false;    
        arr.remove(arr.size()-1);
        return false;            
    }
 
    // function to print the path common
    // to the two paths from the root 
    // to the two given nodes if the nodes 
    // lie in the binary tree
    static void printCommonPath(Node root, int n1, int n2)
    {
        // ArrayList to store the common path
        ArrayList<Integer> arr=new ArrayList<>();
       
        // LCA of node n1 and n2
        Node lca = findLCA(root, n1, n2);
       
        // if LCA of both n1 and n2 exists
        if (lca!=null)
        {  
            // then print the path from root to
            // LCA node
            if (hasPath(root, arr, lca.data))
            {
                for (int i=0; i<arr.size()-1; i++)    
                    System.out.print(arr.get(i)+"->");
                    System.out.print(arr.get(arr.size() - 1));    
            }    
        }
       
        // LCA is not present in the binary tree 
        // either n1 or n2 or both are not present
        else
            System.out.print("No Common Path");
    }
 
    public static void main(String args[])
    {
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.left.left = new Node(4);
        root.left.right = new Node(5);
        root.right.left = new Node(6);
        root.right.right = new Node(7);
        root.left.right.left = new Node(8);
        root.right.left.right = new Node(9);
           
        int n1 = 4, n2 = 8;
        printCommonPath(root, n1, n2);
        }
}
 
/* Class containing left and right child of current
 node and key value*/
class Node
{
    int data;
    Node left, right;
   
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
//This code is contributed by Gaurav Tiwari


Python3




# Python implementation to print the path common to the
# two paths from the root to the two given nodes
 
# structure of a node of binary tree
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# This function returns pointer to LCA of two given values n1 and n2.
# v1 is set as True by this function if n1 is found
# v2 is set as True by this function if n2 is found
def findLCAUtil(root: Node, n1: int, n2: int) -> Node:
    global v1, v2
 
    # Base case
    if (root is None):
        return None
 
    # If either n1 or n2 matches with root's data, report the presence
    # by setting v1 or v2 as True and return root (Note that if a key
    # is ancestor of other, then the ancestor key becomes LCA)
    if (root.data == n1):
        v1 = True
        return root
 
    if (root.data == n2):
 
        v2 = True
        return root
 
    # Look for nodes in left and right subtrees
    left_lca = findLCAUtil(root.left, n1, n2)
    right_lca = findLCAUtil(root.right, n1, n2)
 
    # If both of the above calls return Non-None, then one node
    # is present in one subtree and other is present in other,
    # So this current node is the LCA
    if (left_lca and right_lca):
        return root
 
    # Otherwise check if left subtree or right subtree is LCA
    return left_lca if (left_lca != None) else right_lca
 
# Returns True if key k is present in tree rooted with root
def find(root: Node, k: int) -> bool:
 
    # Base Case
    if (root == None):
        return False
 
    # If key k is present at root, or in left subtree
    # or right subtree, return True
    if (root.data == k or find(root.left, k) or find(root.right, k)):
        return True
 
    # Else return False
    return False
 
# This function returns LCA of n1 and n2 only if both n1 and n2
# are present in tree, otherwise returns None
def findLCA(root: Node, n1: int, n2: int) -> Node:
    global v1, v2
 
    # Initialize n1 and n2 as not visited
    v1 = False
    v2 = False
 
    # Find lca of n1 and n2
    lca = findLCAUtil(root, n1, n2)
 
    # Return LCA only if both n1 and n2 are present in tree
    if (v1 and v2 or v1 and find(lca, n2) or v2 and find(lca, n1)):
        return lca
 
    # Else return None
    return None
 
# function returns True if
# there is a path from root to
# the given node. It also populates
# 'arr' with the given path
def hasPath(root: Node, arr: list, x: int) -> Node:
 
    # if root is None
    # there is no path
    if (root is None):
        return False
 
    # push the node's value in 'arr'
    arr.append(root.data)
 
    # if it is the required node
    # return True
    if (root.data == x):
        return True
 
    # else check whether there    the required node lies in the
    # left subtree or right subtree of the current node
    if (hasPath(root.left, arr, x) or hasPath(root.right, arr, x)):
        return True
 
    # required node does not lie either in the
    # left or right subtree of the current node
    # Thus, remove current node's value from 'arr'
    # and then return False;
    arr.pop()
    return False
 
# function to print the path common
# to the two paths from the root
# to the two given nodes if the nodes
# lie in the binary tree
def printCommonPath(root: Node, n1: int, n2: int):
 
    # vector to store the common path
    arr = []
 
    # LCA of node n1 and n2
    lca = findLCA(root, n1, n2)
 
    # if LCA of both n1 and n2 exists
    if (lca):
 
        # then print the path from root to
        # LCA node
        if (hasPath(root, arr, lca.data)):
 
            for i in range(len(arr) - 1):
                print(arr[i], end="->")
            print(arr[-1])
 
    # LCA is not present in the binary tree
    # either n1 or n2 or both are not present
    else:
        print("No Common Path")
 
# Driver Code
if __name__ == "__main__":
 
    v1 = 0
    v2 = 0
 
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.right.left = Node(6)
    root.right.right = Node(7)
    root.left.right.left = Node(8)
    root.right.left.right = Node(9)
 
    n1 = 4
    n2 = 8
    printCommonPath(root, n1, n2)
 
# This code is contributed by
# sanjeev2552


C#




// C# implementation to print the path common to the
// two paths from the root to the two given nodes
using System;
using System.Collections.Generic;
 
public class PrintCommonPath
{
 
    // Initialize n1 and n2 as not visited
    static Boolean v1 = false, v2 = false;
 
    // This function returns pointer to LCA of two given
    // values n1 and n2. This function assumes that n1 and
    // n2 are present in Binary Tree
    static Node findLCAUtil(Node node, int n1, int n2)
    {
        // Base case
        if (node == null)
            return null;
             
        //Store result in temp, in case of key
        // match so that we can search for other key also.
        Node temp=null;
     
        // If either n1 or n2 matches with root's key, report the presence
        // by setting v1 or v2 as true and return root (Note that if a key
        // is ancestor of other, then the ancestor key becomes LCA)
        if (node.data == n1)
        {
            v1 = true;
            temp = node;
        }
        if (node.data == n2)
        {
            v2 = true;
            temp = node;
        }
     
        // Look for keys in left and right subtrees
        Node left_lca = findLCAUtil(node.left, n1, n2);
        Node right_lca = findLCAUtil(node.right, n1, n2);
     
        if (temp != null)
            return temp;
     
        // If both of the above calls return Non-NULL, then one key
        // is present in once subtree and other is present in other,
        // So this node is the LCA
        if (left_lca != null && right_lca != null)
            return node;
     
        // Otherwise check if left subtree or right subtree is LCA
        return (left_lca != null) ? left_lca : right_lca;
    }
 
    // Returns true if key k is present in tree rooted with root
    static Boolean find(Node root, int k)
    {
        // Base Case
        if (root == null)
            return false;
     
        // If key k is present at root, or in left subtree
        // or right subtree, return true
        if (root.data == k || find(root.left, k) || find(root.right, k))
            return true;
     
        // Else return false
        return false;
    }
 
    // This function returns LCA of n1 and n2 only if both n1 and n2
    // are present in tree, otherwise returns null
    static Node findLCA(Node root, int n1, int n2)
    {
        // Find lca of n1 and n2
        Node lca = findLCAUtil(root, n1, n2);
     
        // Return LCA only if both n1 and n2 are present in tree
        if (v1 && v2 || v1 && find(lca, n2) || v2 && find(lca, n1))
            return lca;
     
        // Else return null
        return null;
    }
 
    // function returns true if
    // there is a path from root to
    // the given node. It also populates
    // 'arr' with the given path
    static Boolean hasPath(Node root, List<int> arr, int x)
    {
        // if root is null
        // there is no path
        if (root == null)
            return false;
         
        // push the node's value in 'arr'
        arr.Add(root.data);    
         
        // if it is the required node
        // return true
        if (root.data == x)    
            return true;
         
        // else check whether there the required node lies in the
        // left subtree or right subtree of the current node
        if (hasPath(root.left, arr, x) ||
            hasPath(root.right, arr, x))
            return true;
         
        // required node does not lie either in the
        // left or right subtree of the current node
        // Thus, remove current node's value from 'arr'
        // and then return false;    
        arr.Remove(arr.Count-1);
        return false;            
    }
 
    // function to print the path common
    // to the two paths from the root
    // to the two given nodes if the nodes
    // lie in the binary tree
    static void printCommonPath(Node root, int n1, int n2)
    {
        // ArrayList to store the common path
        List<int> arr = new List<int>();
         
        // LCA of node n1 and n2
        Node lca = findLCA(root, n1, n2);
         
        // if LCA of both n1 and n2 exists
        if (lca!=null)
        {
            // then print the path from root to
            // LCA node
            if (hasPath(root, arr, lca.data))
            {
                for (int i=0; i<arr.Count-1; i++)    
                    Console.Write(arr[i]+"->");
                    Console.Write(arr[arr.Count - 1]);    
            }    
        }
         
        // LCA is not present in the binary tree
        // either n1 or n2 or both are not present
        else
            Console.Write("No Common Path");
    }
     
    // Driver code
    public static void Main(String []args)
    {
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.left.left = new Node(4);
        root.left.right = new Node(5);
        root.right.left = new Node(6);
        root.right.right = new Node(7);
        root.left.right.left = new Node(8);
        root.right.left.right = new Node(9);
             
        int n1 = 4, n2 = 8;
        printCommonPath(root, n1, n2);
        }
}
 
/* Class containing left and right child of current
node and key value*/
public class Node
{
    public int data;
    public Node left, right;
     
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
// This code has been contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation to print the path
// common to the two paths from the root to the
// two given nodes
class Node
{
    constructor(d)
    {
        this.data = d;
        this.left = this.right = null;
    }
}
 
let v1 = false;
let v2 = false;
 
// This function returns pointer to LCA of two given
// values n1 and n2. This function assumes that n1 and
// n2 are present in Binary Tree
function findLCAUtil(node, n1, n2)
{
     
    // Base case
    if (node == null)
        return null;
         
    // If either n1 or n2 matches with root's key,
    // report the presence by setting v1 or v2 as
    // true and return root (Note that if a key
    // is ancestor of other, then the ancestor
    // key becomes LCA)
    if (node.data == n1)
    {
        v1 = true;
        return node;
    }
    if (node.data == n2)
    {
        v2 = true;
        return node;
    }
 
    // Look for keys in left and right subtrees
    let left_lca = findLCAUtil(node.left, n1, n2);
    let right_lca = findLCAUtil(node.right, n1, n2);
 
    // If both of the above calls return Non-NULL,
    // then one key is present in once subtree and
    // other is present in other, So this node is the LCA
    if (left_lca != null && right_lca != null)
        return node;
 
    // Otherwise check if left subtree or right
    // subtree is LCA
    return (left_lca != null) ? left_lca : right_lca;
}
 
function find(root, k)
{
     
    // Base Case
    if (root == null)
        return false;
 
    // If key k is present at root, or in left subtree
    // or right subtree, return true
    if ((root.data == k) || find(root.left, k) ||
                            find(root.right, k))
        return true;
 
    // Else return false
    return false;
}
 
// This function returns LCA of n1 and n2 only
// if both n1 and n2 are present in tree,
// otherwise returns null
function findLCA(root, n1, n2)
{
     
    // Find lca of n1 and n2
    let lca = findLCAUtil(root, n1, n2);
     
    // Return LCA only if both n1 and n2
    // are present in tree
    if ((v1 && v2) || (v1 && find(lca, n2)) ||
                      (v2 && find(lca, n1)))
        return lca;
 
    // Else return null
    return null;
}
 
// Function returns true if
// there is a path from root to
// the given node. It also populates
// 'arr' with the given path
function hasPath(root, arr, x)
{
     
    // If root is null
    // there is no path
    if (root == null)
        return false;
     
    // Push the node's value in 'arr'
    arr.push(root.data);   
     
    // If it is the required node
    // return true
    if (root.data == x)   
        return true;
     
    // Else check whether the required node lies in the
    // left subtree or right subtree of the current node
    if (hasPath(root.left, arr, x) ||
        hasPath(root.right, arr, x))
        return true;
     
    // Required node does not lie either in the
    // left or right subtree of the current node
    // Thus, remove current node's value from 'arr'
    // and then return false;   
    arr.pop();
    return false;          
}
 
// Function to print the path common
// to the two paths from the root
// to the two given nodes if the nodes
// lie in the binary tree
function printCommonPath(root, n1, n2)
{
     
    // ArrayList to store the common path
    let arr = [];
    
    // LCA of node n1 and n2
    let lca = findLCA(root, n1, n2);
        
    // If LCA of both n1 and n2 exists
    if (lca != null)
    
         
        // Then print the path from root to
        // LCA node
        if (hasPath(root, arr, lca.data))
        {
            for(let i = 0; i < arr.length - 1; i++)   
            {    document.write(arr[i] + "->");
                document.write(arr[arr.length - 1]);   
            }
        }   
    }
    
    // LCA is not present in the binary tree
    // either n1 or n2 or both are not present
    else
    {
        document.write("No Common Path");
    }
}
 
// Driver code
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
root.left.right.left = new Node(8);
root.right.left.right = new Node(9);
 
let n1 = 4, n2 = 8;
printCommonPath(root, n1, n2);
 
// This code is contributed by rag2127
 
</script>


Output

1->2

Time complexity: O(n), where n is the number of nodes in the binary tree.

Space Complexity: O(h) where h is the height of binary tree.

 



Last Updated : 17 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads