# Orientation of 3 ordered points

Orientation of an ordered triplet of points in the plane can be

• counterclockwise
• clockwise
• colinear

The following diagram shows different possible orientations of (a, b, c)

If orientation of (p1, p2, p3) is collinear, then orientation of (p3, p2, p1) is also collinear.
If orientation of (p1, p2, p3) is clockwise, then orientation of (p3, p2, p1) is counterclockwise and vice versa is also true.

Given three points p1, p2 and p3, find orientation of (p1, p2, p3).
Example:

```Input:   p1 = {0, 0}, p2 = {4, 4}, p3 = {1, 2}
Output:  CounterClockWise

Input:   p1 = {0, 0}, p2 = {4, 4}, p3 = {1, 1}
Output:  Colinear
```

How to compute Orientation?

```The idea is to use slope.

Slope of line segment (p1, p2): σ = (y2 - y1)/(x2 - x1)
Slope of line segment (p2, p3): τ = (y3 - y2)/(x3 - x2)

If  σ < τ, the orientation is counterclockwise (left turn)
If  σ = τ, the orientation is collinear
If  σ > τ, the orientation is clockwise (right turn)

Using above values of σ and τ, we can conclude that,
the orientation depends on sign of  below expression:

(y2 - y1)*(x3 - x2) - (y3 - y2)*(x2 - x1)

Above expression is negative when σ < τ, i.e., counterclockwise
Above expression is 0 when σ = τ, i.e., collinear
Above expression is positive when σ > τ, i.e., clockwise```

Below is the implementation of above idea.

## C++

```// A C++ program to find orientation of three points
#include <iostream>
using namespace std;

struct Point
{
int x, y;
};

// To find orientation of ordered triplet (p1, p2, p3).
// The function returns following values
// 0 --> p, q and r are colinear
// 1 --> Clockwise
// 2 --> Counterclockwise
int orientation(Point p1, Point p2, Point p3)
{
// See 10th slides from following link for derivation
// of the formula
int val = (p2.y - p1.y) * (p3.x - p2.x) -
(p2.x - p1.x) * (p3.y - p2.y);

if (val == 0) return 0;  // colinear

return (val > 0)? 1: 2; // clock or counterclock wise
}

// Driver program to test above functions
int main()
{
Point p1 = {0, 0}, p2 = {4, 4}, p3 = {1, 2};
int o = orientation(p1, p2, p3);
if (o==0)         cout << "Linear";
else if (o == 1)  cout << "Clockwise";
else              cout << "CounterClockwise";
return 0;
}
```

## Java

```// JAVA Code to find Orientation of 3
// ordered points
class Point
{
int x, y;
Point(int x,int y){
this.x=x;
this.y=y;
}
}

class GFG {

// To find orientation of ordered triplet
// (p1, p2, p3). The function returns
// following values
// 0 --> p, q and r are colinear
// 1 --> Clockwise
// 2 --> Counterclockwise
public static int orientation(Point p1, Point p2,
Point p3)
{
// See 10th slides from following link
// for derivation of the formula
int val = (p2.y - p1.y) * (p3.x - p2.x) -
(p2.x - p1.x) * (p3.y - p2.y);

if (val == 0) return 0;  // colinear

// clock or counterclock wise
return (val > 0)? 1: 2;
}

/* Driver program to test above function */
public static void main(String[] args)
{
Point p1 = new Point(0, 0);
Point p2 = new Point(4, 4);
Point p3 = new Point(1, 2);

int o = orientation(p1, p2, p3);

if (o==0)
System.out.print("Linear");
else if (o == 1)
System.out.print("Clockwise");
else
System.out.print("CounterClockwise");

}
}

//This code is contributed by Arnav Kr. Mandal.
```

Output:
`CounterClockwise`

The concept of orientation is used in below articles:
Find Simple Closed Path for a given set of points
How to check if two given line segments intersect?
Convex Hull | Set 1 (Jarvis’s Algorithm or Wrapping)
Convex Hull | Set 2 (Graham Scan)

This article is contributed by Rajeev Agrawal. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

# GATE CS Corner    Company Wise Coding Practice

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.
2.1 Average Difficulty : 2.1/5.0
Based on 27 vote(s)

Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.