# Smallest subarray with sum greater than a given value

Given an array of integers and a number x, find the smallest subarray with sum greater than the given value.

```Examples:
arr[] = {1, 4, 45, 6, 0, 19}
x  =  51
Output: 3
Minimum length subarray is {4, 45, 6}

arr[] = {1, 10, 5, 2, 7}
x  = 9
Output: 1
Minimum length subarray is {10}

arr[] = {1, 11, 100, 1, 0, 200, 3, 2, 1, 250}
x = 280
Output: 4
Minimum length subarray is {100, 1, 0, 200}

arr[] = {1, 2, 4}
x = 8
Output : Not Possible
Whole array sum is smaller than 8.
```

## Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

A simple solution is to use two nested loops. The outer loop picks a starting element, the inner loop considers all elements (on right side of current start) as ending element. Whenever sum of elements between current start and end becomes more than the given number, update the result if current length is smaller than the smallest length so far.
Following is the implementation of simple approach.

## C

```# include <iostream>
using namespace std;

// Returns length of smallest subarray with sum greater than x.
// If there is no subarray with given sum, then returns n+1
int smallestSubWithSum(int arr[], int n, int x)
{
//  Initilize length of smallest subarray as n+1
int min_len = n + 1;

// Pick every element as starting point
for (int start=0; start<n; start++)
{
// Initialize sum starting with current start
int curr_sum = arr[start];

// If first element itself is greater
if (curr_sum > x) return 1;

// Try different ending points for curremt start
for (int end=start+1; end<n; end++)
{
// add last element to current sum
curr_sum += arr[end];

// If sum becomes more than x and length of
// this subarray is smaller than current smallest
// length, update the smallest length (or result)
if (curr_sum > x && (end - start + 1) < min_len)
min_len = (end - start + 1);
}
}
return min_len;
}

/* Driver program to test above function */
int main()
{
int arr1[] = {1, 4, 45, 6, 10, 19};
int x = 51;
int n1 = sizeof(arr1)/sizeof(arr1[0]);
int res1 = smallestSubWithSum(arr1, n1, x);
(res1 == n1+1)? cout << "Not possible\n" :
cout << res1 << endl;

int arr2[] = {1, 10, 5, 2, 7};
int n2 = sizeof(arr2)/sizeof(arr2[0]);
x  = 9;
int res2 = smallestSubWithSum(arr2, n2, x);
(res2 == n2+1)? cout << "Not possible\n" :
cout << res2 << endl;

int arr3[] = {1, 11, 100, 1, 0, 200, 3, 2, 1, 250};
int n3 = sizeof(arr3)/sizeof(arr3[0]);
x  = 280;
int res3 = smallestSubWithSum(arr3, n3, x);
(res3 == n3+1)? cout << "Not possible\n" :
cout << res3 << endl;

return 0;
}
```

## Java

```class SmallestSubArraySum
{
// Returns length of smallest subarray with sum greater than x.
// If there is no subarray with given sum, then returns n+1
static int smallestSubWithSum(int arr[], int n, int x)
{
//  Initilize length of smallest subarray as n+1
int min_len = n + 1;

// Pick every element as starting point
for (int start = 0; start < n; start++)
{
// Initialize sum starting with current start
int curr_sum = arr[start];

// If first element itself is greater
if (curr_sum > x)
return 1;

// Try different ending points for curremt start
for (int end = start + 1; end < n; end++)
{
// add last element to current sum
curr_sum += arr[end];

// If sum becomes more than x and length of
// this subarray is smaller than current smallest
// length, update the smallest length (or result)
if (curr_sum > x && (end - start + 1) < min_len)
min_len = (end - start + 1);
}
}
return min_len;
}

// Driver program to test above functions
public static void main(String[] args)
{
int arr1[] = {1, 4, 45, 6, 10, 19};
int x = 51;
int n1 = arr1.length;
int res1 = smallestSubWithSum(arr1, n1, x);
if (res1 == n1+1)
System.out.println("Not Possible");
else
System.out.println(res1);

int arr2[] = {1, 10, 5, 2, 7};
int n2 = arr2.length;
x = 9;
int res2 = smallestSubWithSum(arr2, n2, x);
if (res2 == n2+1)
System.out.println("Not Possible");
else
System.out.println(res2);

int arr3[] = {1, 11, 100, 1, 0, 200, 3, 2, 1, 250};
int n3 = arr3.length;
x = 280;
int res3 = smallestSubWithSum(arr3, n3, x);
if (res3 == n3+1)
System.out.println("Not Possible");
else
System.out.println(res3);
}
}

// This code has been contributed by Mayank Jaiswal
```

Output:
```3
1
4 ```

Time Complexity: Time complexity of the above approach is clearly O(n2).

Efficient Solution: This problem can be solved in O(n) time using the idea used in this post. Thanks to Ankit and Nitin for suggesting this optimized solution.

## C++

```// O(n) solution for finding smallest subarray with sum
// greater than x
#include <iostream>
using namespace std;

// Returns length of smallest subarray with sum greater than x.
// If there is no subarray with given sum, then returns n+1
int smallestSubWithSum(int arr[], int n, int x)
{
// Initialize current sum and minimum length
int curr_sum = 0, min_len = n+1;

// Initialize starting and ending indexes
int start = 0, end = 0;
while (end < n)
{
// Keep adding array elements while current sum
// is smaller than x
while (curr_sum <= x && end < n)
curr_sum += arr[end++];

// If current sum becomes greater than x.
while (curr_sum > x && start < n)
{
// Update minimum length if needed
if (end - start < min_len)
min_len = end - start;

// remove starting elements
curr_sum -= arr[start++];
}
}
return min_len;
}

/* Driver program to test above function */
int main()
{
int arr1[] = {1, 4, 45, 6, 10, 19};
int x = 51;
int n1 = sizeof(arr1)/sizeof(arr1[0]);
int res1 = smallestSubWithSum(arr1, n1, x);
(res1 == n1+1)? cout << "Not possible\n" :
cout << res1 << endl;

int arr2[] = {1, 10, 5, 2, 7};
int n2 = sizeof(arr2)/sizeof(arr2[0]);
x  = 9;
int res2 = smallestSubWithSum(arr2, n2, x);
(res2 == n2+1)? cout << "Not possible\n" :
cout << res2 << endl;

int arr3[] = {1, 11, 100, 1, 0, 200, 3, 2, 1, 250};
int n3 = sizeof(arr3)/sizeof(arr3[0]);
x  = 280;
int res3 = smallestSubWithSum(arr3, n3, x);
(res3 == n3+1)? cout << "Not possible\n" :
cout << res3 << endl;

return 0;
}
```

## Java

```// O(n) solution for finding smallest subarray with sum
// greater than x

class SmallestSubArraySum
{
// Returns length of smallest subarray with sum greater than x.
// If there is no subarray with given sum, then returns n+1
static int smallestSubWithSum(int arr[], int n, int x)
{
// Initialize current sum and minimum length
int curr_sum = 0, min_len = n + 1;

// Initialize starting and ending indexes
int start = 0, end = 0;
while (end < n)
{
// Keep adding array elements while current sum
// is smaller than x
while (curr_sum <= x && end < n)
curr_sum += arr[end++];

// If current sum becomes greater than x.
while (curr_sum > x && start < n)
{
// Update minimum length if needed
if (end - start < min_len)
min_len = end - start;

// remove starting elements
curr_sum -= arr[start++];
}
}
return min_len;
}
// Driver program to test above functions
public static void main(String[] args)
{
int arr1[] = {1, 4, 45, 6, 10, 19};
int x = 51;
int n1 = arr1.length;
int res1 = smallestSubWithSum(arr1, n1, x);
if (res1 == n1+1)
System.out.println("Not Possible");
else
System.out.println(res1);

int arr2[] = {1, 10, 5, 2, 7};
int n2 = arr2.length;
x = 9;
int res2 = smallestSubWithSum(arr2, n2, x);
if (res2 == n2+1)
System.out.println("Not Possible");
else
System.out.println(res2);

int arr3[] = {1, 11, 100, 1, 0, 200, 3, 2, 1, 250};
int n3 = arr3.length;
x = 280;
int res3 = smallestSubWithSum(arr3, n3, x);
if (res3 == n3+1)
System.out.println("Not Possible");
else
System.out.println(res3);
}
}

// This code has been contributed by Mayank Jaiswal
```

Output:
```3
1
4 ```

How to handle negative numbers?
The above solution may not work if input array contains negative numbers. For example arr[] = {- 8, 1, 4, 2, -6}. To handle negative numbers, add a condition to ignore subarrays with negative sums.

```// O(n) solution for finding smallest subarray with sum
// greater than x
#include <iostream>
using namespace std;

// Returns length of smallest subarray with sum greater than x.
// If there is no subarray with given sum, then returns n+1
int smallestSubWithSum(int arr[], int n, int x)
{
// Initialize current sum and minimum length
int curr_sum = 0, min_len = n+1;

// Initialize starting and ending indexes
int start = 0, end = 0;
while (end < n)
{
// Keep adding array elements while current sum
// is smaller than x
while (curr_sum <= x && end < n)
{
// Ignore subarrays with negative sum if
// x is positive.
if (curr_sum <= 0 && x > 0)
{
start = end;
curr_sum = 0;
}

curr_sum += arr[end++];
}

// If current sum becomes greater than x.
while (curr_sum > x && start < n)
{
// Update minimum length if needed
if (end - start < min_len)
min_len = end - start;

// remove starting elements
curr_sum -= arr[start++];
}
}
return min_len;
}

/* Driver program to test above function */
int main()
{
int arr1[] = {- 8, 1, 4, 2, -6};
int x = 6;
int n1 = sizeof(arr1)/sizeof(arr1[0]);
int res1 = smallestSubWithSum(arr1, n1, x);
(res1 == n1+1)? cout << "Not possible\n" :
cout << res1 << endl;

return 0;
}
```

Output:

`3 `

# GATE CS Corner    Company Wise Coding Practice

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.
3.1 Average Difficulty : 3.1/5.0
Based on 73 vote(s)