Open In App

Flattening a Linked List

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Share
Report issue
Report

Given a Linked List of size N, where every node represents a sub-linked-list and contains two pointers:
(i) a next pointer to the next node,
(ii) a bottom pointer to a linked list where this node is head.
Each of the sub-linked-list is in sorted order.
Flatten the Link List such that all the nodes appear in a single level while maintaining the sorted order. 
Note: The flattened list will be printed using the bottom pointer instead of next pointer.

Note: All linked lists are sorted and the resultant linked list should also be sorted

Examples: 

Input:    5 -> 10 -> 19 -> 28
               |        |         |        |
              V       V       V       V
              7      20      22     35
               |                 |        |
              V               V       V
              8               50     40
              |                          |
             V                        V
            30                       45

Output: 5->7->8->10->19->20->22->28->30->35->40->45->50

Input:    3 -> 10 -> 7 -> 14
               |        |         |        |
              V       V       V       V
              9      47      15     22
               |                 |        
              V                V      
              17              30

Output: 3->7->9->10->14->15->17->22->30->47   

The idea is to use the Merge() process of merge sort for linked lists. Use merge() to merge lists one by one, recursively merge() the current list with the already flattened list. The bottom pointer is used to link nodes of the flattened list.

 

Follow the given steps to solve the problem:

  • Recursively call to merge the current linked list with the next linked list
  • If the current linked list is empty or there is no next linked list then return the current linked list (Base Case)
  • Start merging the linked lists, starting from the last linked list
  • After merging the current linked list with the next linked list, return the head node of the current linked list

Below is the implementation of the above approach:

C++




// C++ program for flattening a Linked List
#include <bits/stdc++.h>
using namespace std;
 
// Linked list node
class Node {
public:
    int data;
    Node *next, *bottom;
};
 
Node* head = NULL;
 
// An utility function to merge two sorted
// linked lists
Node* merge(Node* a, Node* b)
{
 
    // If first linked list is empty then second
    // is the answer
    if (a == NULL)
        return b;
 
    // If second linked list is empty then first
    // is the result
    if (b == NULL)
        return a;
 
    // Compare the data members of the two linked
    // lists and put the larger one in the result
    Node* result;
 
    if (a->data < b->data) {
        result = a;
        result->bottom = merge(a->bottom, b);
    }
 
    else {
        result = b;
        result->bottom = merge(a, b->bottom);
    }
    result->next = NULL;
    return result;
}
 
Node* flatten(Node* root)
{
 
    // Base Cases
    if (root == NULL || root->next == NULL)
        return root;
 
    // Recur for next list
    root->next = flatten(root->next);
 
    // Now merge
    root = merge(root, root->next);
 
    // Return the root
    // it will be in turn merged with its left
    return root;
}
 
// Utility function to insert a node at
// beginning of the linked list
Node* push(Node* head_ref, int data)
{
 
    // Allocate the Node & Put in the data
    Node* new_node = new Node();
 
    new_node->data = data;
    new_node->next = NULL;
 
    // Make next of new Node as head
    new_node->bottom = head_ref;
 
    // Move the head to point to new Node
    head_ref = new_node;
 
    return head_ref;
}
 
void printList()
{
    Node* temp = head;
    while (temp != NULL) {
        cout << temp->data << " ";
        temp = temp->bottom;
    }
    cout << endl;
}
 
// Driver's code
int main()
{
 
    /* Let us create the following linked list
        5 -> 10 -> 19 -> 28
        |    |     |     |
        V    V     V     V
        7    20    22    35
        |          |     |
        V          V     V
        8          50    40
        |                |
        V                V
        30               45
    */
    head = push(head, 30);
    head = push(head, 8);
    head = push(head, 7);
    head = push(head, 5);
 
    head->next = push(head->next, 20);
    head->next = push(head->next, 10);
 
    head->next->next = push(head->next->next, 50);
    head->next->next = push(head->next->next, 22);
    head->next->next = push(head->next->next, 19);
 
    head->next->next->next
        = push(head->next->next->next, 45);
    head->next->next->next
        = push(head->next->next->next, 40);
    head->next->next->next
        = push(head->next->next->next, 35);
    head->next->next->next
        = push(head->next->next->next, 28);
 
    // Function call
    head = flatten(head);
 
    printList();
    return 0;
}
 
// This code is contributed by rajsanghavi9.


Java




// Java program for flattening a Linked List
class LinkedList {
    Node head; // head of list
 
    /* Linked list Node*/
    class Node {
        int data;
        Node next, bottom;
        Node(int data)
        {
            this.data = data;
            next = null;
            bottom = null;
        }
    }
 
    // An utility function to merge two sorted linked lists
    Node merge(Node a, Node b)
    {
        // if first linked list is empty then second
        // is the answer
        if (a == null)
            return b;
 
        // if second linked list is empty then first
        // is the result
        if (b == null)
            return a;
 
        // compare the data members of the two linked lists
        // and put the larger one in the result
        Node result;
 
        if (a.data < b.data) {
            result = a;
            result.bottom = merge(a.bottom, b);
        }
 
        else {
            result = b;
            result.bottom = merge(a, b.bottom);
        }
 
        result.next = null;
        return result;
    }
 
    Node flatten(Node root)
    {
        // Base Cases
        if (root == null || root.next == null)
            return root;
 
        // recur for list on next
        root.next = flatten(root.next);
 
        // now merge
        root = merge(root, root.next);
 
        // return the root
        // it will be in turn merged with its left
        return root;
    }
 
    /* Utility function to insert a node at beginning of the
       linked list */
    Node push(Node head_ref, int data)
    {
        /* 1 & 2: Allocate the Node &
                  Put in the data*/
        Node new_node = new Node(data);
 
        /* 3. Make next of new Node as head */
        new_node.bottom = head_ref;
 
        /* 4. Move the head to point to new Node */
        head_ref = new_node;
 
        /*5. return to link it back */
        return head_ref;
    }
 
    void printList()
    {
        Node temp = head;
        while (temp != null) {
            System.out.print(temp.data + " ");
            temp = temp.bottom;
        }
        System.out.println();
    }
 
    // Driver's code
    public static void main(String args[])
    {
        LinkedList L = new LinkedList();
 
        /* Let us create the following linked list
            5 -> 10 -> 19 -> 28
            |    |     |     |
            V    V     V     V
            7    20    22    35
            |          |     |
            V          V     V
            8          50    40
            |                |
            V                V
            30               45
        */
 
        L.head = L.push(L.head, 30);
        L.head = L.push(L.head, 8);
        L.head = L.push(L.head, 7);
        L.head = L.push(L.head, 5);
 
        L.head.next = L.push(L.head.next, 20);
        L.head.next = L.push(L.head.next, 10);
 
        L.head.next.next = L.push(L.head.next.next, 50);
        L.head.next.next = L.push(L.head.next.next, 22);
        L.head.next.next = L.push(L.head.next.next, 19);
 
        L.head.next.next.next
            = L.push(L.head.next.next.next, 45);
        L.head.next.next.next
            = L.push(L.head.next.next.next, 40);
        L.head.next.next.next
            = L.push(L.head.next.next.next, 35);
        L.head.next.next.next
            = L.push(L.head.next.next.next, 28);
 
        // Function call
        L.head = L.flatten(L.head);
 
        L.printList();
    }
} /* This code is contributed by Rajat Mishra */


Python3




# Python3 program for flattening a Linked List
 
 
class Node():
    def __init__(self, data):
        self.data = data
        self.next = None
        self.bottom = None
 
 
class LinkedList():
    def __init__(self):
 
        # head of list
        self.head = None
 
    # Utility function to insert a node at beginning of the
    #   linked list
    def push(self, head_ref, data):
 
        # 1 & 2: Allocate the Node &
        # Put in the data
        new_node = Node(data)
 
        # Make next of new Node as head
        new_node.bottom = head_ref
 
        # 4. Move the head to point to new Node
        head_ref = new_node
 
        # 5. return to link it back
        return head_ref
 
    def printList(self):
 
        temp = self.head
        while(temp != None):
            print(temp.data, end=" ")
            temp = temp.bottom
 
        print()
 
    # An utility function to merge two sorted linked lists
    def merge(self, a, b):
        # if first linked list is empty then second
        # is the answer
        if(a == None):
            return b
 
        # if second linked list is empty then first
        # is the result
        if(b == None):
            return a
 
        # compare the data members of the two linked lists
        # and put the larger one in the result
        result = None
 
        if (a.data < b.data):
            result = a
            result.bottom = self.merge(a.bottom, b)
        else:
            result = b
            result.bottom = self.merge(a, b.bottom)
 
        result.next = None
        return result
 
    def flatten(self, root):
 
        # Base Case
        if(root == None or root.next == None):
            return root
        # recur for list on next
 
        root.next = self.flatten(root.next)
 
        # now merge
        root = self.merge(root, root.next)
 
        # return the root
        # it will be in turn merged with its left
        return root
 
 
# Driver's code
if __name__ == '__main__':
    L = LinkedList()
 
    '''
    Let us create the following linked list
            5 -> 10 -> 19 -> 28
            |    |     |     |
            V    V     V     V
            7    20    22    35
            |          |     |
            V          V     V
            8          50    40
            |                |
            V                V
            30               45
    '''
    L.head = L.push(L.head, 30)
    L.head = L.push(L.head, 8)
    L.head = L.push(L.head, 7)
    L.head = L.push(L.head, 5)
 
    L.head.next = L.push(L.head.next, 20)
    L.head.next = L.push(L.head.next, 10)
 
    L.head.next.next = L.push(L.head.next.next, 50)
    L.head.next.next = L.push(L.head.next.next, 22)
    L.head.next.next = L.push(L.head.next.next, 19)
 
    L.head.next.next.next = L.push(L.head.next.next.next, 45)
    L.head.next.next.next = L.push(L.head.next.next.next, 40)
    L.head.next.next.next = L.push(L.head.next.next.next, 35)
    L.head.next.next.next = L.push(L.head.next.next.next, 28)
 
    # Function call
    L.head = L.flatten(L.head)
 
    L.printList()
    # This code is contributed by maheshwaripiyush9


C#




// C# program for flattening a Linked List
 
using System;
public class List {
    Node head; // head of list
 
    /* Linked list Node */
    public
 
        class Node {
        public
 
            int data;
        public
 
            Node next,
            bottom;
 
        public
 
            Node(int data)
        {
            this.data = data;
            next = null;
            bottom = null;
        }
    }
 
    // An utility function to merge two sorted linked lists
    Node merge(Node a, Node b)
    {
        // if first linked list is empty then second
        // is the answer
        if (a == null)
            return b;
 
        // if second linked list is empty then first
        // is the result
        if (b == null)
            return a;
 
        // compare the data members of the two linked lists
        // and put the larger one in the result
        Node result;
 
        if (a.data < b.data) {
            result = a;
            result.bottom = merge(a.bottom, b);
        }
 
        else {
            result = b;
            result.bottom = merge(a, b.bottom);
        }
 
        result.next = null;
        return result;
    }
 
    Node flatten(Node root)
    {
        // Base Cases
        if (root == null || root.next == null)
            return root;
 
        // recur for list on next
        root.next = flatten(root.next);
 
        // now merge
        root = merge(root, root.next);
 
        // return the root
        // it will be in turn merged with its left
        return root;
    }
 
    /*
     * Utility function to insert a node at beginning
     * of the linked list
     */
    Node Push(Node head_ref, int data)
    {
        /*
         * 1 & 2: Allocate the Node & Put in the data
         */
        Node new_node = new Node(data);
 
        /* 3. Make next of new Node as head */
        new_node.bottom = head_ref;
 
        /* 4. Move the head to point to new Node */
        head_ref = new_node;
 
        /* 5. return to link it back */
        return head_ref;
    }
 
    void printList()
    {
        Node temp = head;
        while (temp != null) {
            Console.Write(temp.data + " ");
            temp = temp.bottom;
        }
        Console.WriteLine();
    }
 
    // Driver's code
    public static void Main(String[] args)
    {
        List L = new List();
 
        /*
         * Let us create the following linked list 5 -> 10
         * -> 19 -> 28 | | | | V V V V 7 20 22 35 | | | V V
         * V 8 50 40 | | V V 30 45
         */
 
        L.head = L.Push(L.head, 30);
        L.head = L.Push(L.head, 8);
        L.head = L.Push(L.head, 7);
        L.head = L.Push(L.head, 5);
 
        L.head.next = L.Push(L.head.next, 20);
        L.head.next = L.Push(L.head.next, 10);
 
        L.head.next.next = L.Push(L.head.next.next, 50);
        L.head.next.next = L.Push(L.head.next.next, 22);
        L.head.next.next = L.Push(L.head.next.next, 19);
 
        L.head.next.next.next
            = L.Push(L.head.next.next.next, 45);
        L.head.next.next.next
            = L.Push(L.head.next.next.next, 40);
        L.head.next.next.next
            = L.Push(L.head.next.next.next, 35);
        L.head.next.next.next
            = L.Push(L.head.next.next.next, 28);
 
        // Function call
        L.head = L.flatten(L.head);
 
        L.printList();
    }
}
 
// This code is contributed by umadevi9616


Javascript




// javascript program for flattening a Linked List
var head; // head of list
 
    /* Linked list Node */
      
     class Node {
            constructor(val) {
                this.data = val;
                this.bottom = null;
                this.next = null;
            }
        }
 
    // An utility function to merge two sorted linked lists
    function merge(a,  b) {
        // if first linked list is empty then second
        // is the answer
        if (a == null)
            return b;
 
        // if second linked list is empty then first
        // is the result
        if (b == null)
            return a;
 
        // compare the data members of the two linked lists
        // and put the larger one in the result
        var result;
 
        if (a.data < b.data) {
            result = a;
            result.bottom = merge(a.bottom, b);
        }
 
        else {
            result = b;
            result.bottom = merge(a, b.bottom);
        }
 
        result.next = null;
        return result;
    }
 
    function flatten(root) {
        // Base Cases
        if (root == null || root.next == null)
            return root;
 
        // recur for list on next
        root.next = flatten(root.next);
 
        // now merge
        root = merge(root, root.next);
 
        // return the root
        // it will be in turn merged with its left
        return root;
    }
 
    /*
     * Utility function to insert a node at beginning of the linked list
     */
    function push(head_ref , data) {
        /*
         * 1 & 2: Allocate the Node & Put in the data
         */
         var new_node = new Node(data);
 
        /* 3. Make next of new Node as head */
        new_node.bottom = head_ref;
 
        /* 4. Move the head to point to new Node */
        head_ref = new_node;
 
        /* 5. return to link it back */
        return head_ref;
    }
 
    function printList() {
    var temp = head;
        while (temp != null) {
            document.write(temp.data + " ");
            temp = temp.bottom;
        }
        document.write();
    }
 
    /* Driver program to test above functions */
     
         
 
        /*
         * Let us create the following linked list 5 -> 10 -> 19 -> 28 | | | | V V V V 7
         * 20 22 35 | | | V V V 8 50 40 | | V V 30 45
         */
 
        head = push(head, 30);
        head = push(head, 8);
        head = push(head, 7);
        head = push(head, 5);
 
        head.next = push(head.next, 20);
        head.next = push(head.next, 10);
 
        head.next.next = push(head.next.next, 50);
        head.next.next = push(head.next.next, 22);
        head.next.next = push(head.next.next, 19);
 
        head.next.next.next = push(head.next.next.next, 45);
        head.next.next.next = push(head.next.next.next, 40);
        head.next.next.next = push(head.next.next.next, 35);
        head.next.next.next = push(head.next.next.next, 20);
 
        // flatten the list
        head = flatten(head);
 
        printList();
 
// This code contributed by aashish1995


Output

5 7 8 10 19 20 20 22 30 35 40 45 50 

Time Complexity: O(N * N * M) – where N is the no of nodes in the main linked list and M is the no of nodes in a single sub-linked list 

Auxiliary Space: O(1)
Explanation: As we are merging 2 lists at a time,

  • After adding the first 2 lists, the time taken will be O(M+M) = O(2M).
  • Then we will merge another list to above merged list -> time = O(2M + M) = O(3M).
  • Then we will merge another list -> time = O(3M + M).
  • We will keep merging lists to previously merged lists until all lists are merged.
  • Total time taken will be O(2M + 3M + 4M + …. N*M) = (2 + 3 + 4 + … + N) * M
  • Using arithmetic sum formula: time = O((N * N + N – 2) * M/2)
  • The above expression is roughly equal to O(N * N * M) for a large value of N

Auxiliary Space: O(N*M) – because of the recursion. The recursive functions will use a recursive stack of a size equivalent to a total number of elements in the lists, which is N*M.

Flattening a Linked List using Priority Queues:

The idea is, to build a Min-Heap and push head node of every linked list into it and then use Extract-min function to get minimum element from priority queue and then move forward in that linked list.

Follow the given steps to solve the problem:

  • Create a priority queue(Min-Heap) and push the head node of every linked list into it
  • While the priority queue is not empty, extract the minimum value node from it and if there is a next node linked to the minimum value node then push it into the priority queue
  • Also, print the value of the node every time after extracting the minimum value node

Below is the implementation of the above approach:

C++




// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Linked list Node
struct Node {
    int data;
    struct Node* next;
    struct Node* bottom;
 
    Node(int x)
    {
        data = x;
        next = NULL;
        bottom = NULL;
    }
};
 
// comparator function for priority queue
struct mycomp {
    bool operator()(Node* a, Node* b)
    {
        return a->data > b->data;
    }
};
 
void flatten(Node* root)
{
    priority_queue<Node*, vector<Node*>, mycomp> p;
    // pushing main link nodes into priority_queue.
    while (root != NULL) {
        p.push(root);
        root = root->next;
    }
 
    // Extracting the minimum node
    // while priority queue is not empty
    while (!p.empty()) {
 
        // extracting min
        auto k = p.top();
        p.pop();
 
        // printing  least element
        cout << k->data << " ";
        if (k->bottom)
            p.push(k->bottom);
    }
}
 
// Driver's code
int main(void)
{
    // This code builds the flattened linked list
    // of first picture in this article ;
    Node* head = new Node(5);
    auto temp = head;
    auto bt = head;
    bt->bottom = new Node(7);
    bt->bottom->bottom = new Node(8);
    bt->bottom->bottom->bottom = new Node(30);
    temp->next = new Node(10);
 
    temp = temp->next;
    bt = temp;
    bt->bottom = new Node(20);
    temp->next = new Node(19);
    temp = temp->next;
    bt = temp;
    bt->bottom = new Node(22);
    bt->bottom->bottom = new Node(50);
    temp->next = new Node(28);
    temp = temp->next;
    bt = temp;
    bt->bottom = new Node(35);
    bt->bottom->bottom = new Node(40);
    bt->bottom->bottom->bottom = new Node(45);
 
    // Function call
    flatten(head);
    cout << endl;
    return 0;
}
// this code is contributed by user_990i


Java




import java.util.PriorityQueue;
 
// Node class
class Node {
    int data;
    Node next;
    Node bottom;
    Node(int data)
    {
        this.data = data;
        next = null;
        bottom = null;
    }
}
 
// Comparator class to sort nodes in a priority queue
class NodeComparator implements java.util.Comparator<Node> {
    @Override public int compare(Node a, Node b)
    {
        return a.data - b.data;
    }
}
 
public class Main {
    // Function to flatten the linked list
    public static void flatten(Node root)
    {
 
        // Priority queue to store nodes
        PriorityQueue<Node> pq
            = new PriorityQueue<Node>(new NodeComparator());
 
        // Adding main linked list nodes into priority queue
        while (root != null) {
            pq.add(root);
            root = root.next;
        }
 
        // Extracting the minimum node
        // while priority queue is not empty
        while (!pq.isEmpty()) {
            // Extracting the minimum node
            Node k = pq.poll();
 
            // Printing the node data
            System.out.print(k.data + " ");
            if (k.bottom != null) {
                pq.add(k.bottom);
            }
        }
    }
 
    public static void main(String[] args)
    {
        Node head = new Node(5);
        Node temp = head;
        Node bt = head;
 
        bt.bottom = new Node(7);
        bt.bottom.bottom = new Node(8);
        bt.bottom.bottom.bottom = new Node(30);
 
        temp.next = new Node(10);
        temp = temp.next;
 
        bt = temp;
        bt.bottom = new Node(20);
 
        temp.next = new Node(19);
        temp = temp.next;
 
        bt = temp;
        bt.bottom = new Node(22);
        bt.bottom.bottom = new Node(50);
 
        temp.next = new Node(28);
        temp = temp.next;
 
        bt = temp;
        bt.bottom = new Node(35);
        bt.bottom.bottom = new Node(40);
        bt.bottom.bottom.bottom = new Node(45);
 
        // Calling function to flatten the linked list
        flatten(head);
    }
}


Python3




from heapq import heappush, heappop
class Node:
    def __init__(self, d):
        self.data = d
        self.right = self.down = None
 
 
class LinkedList():
    def __init__(self):
 
        # head of list
        self.head = None
 
    # Utility function to insert a node at beginning of the
    #   linked list
    def push(self, head_ref, data):
 
        # 1 & 2: Allocate the Node &
        # Put in the data
        new_node = Node(data)
 
        # Make next of new Node as head
        new_node.down = head_ref
 
        # 4. Move the head to point to new Node
        head_ref = new_node
 
        # 5. return to link it back
        return head_ref
 
    def printList(self):
 
        temp = self.head
        while(temp != None):
            print(temp.data, end=" ")
            temp = temp.down
 
        print()
 
 
# class to compare two node objects
class Cmp:
    def __init__(self, node):
        self.node = node
 
    def __lt__(self, other):
        return self.node.data < other.node.data
 
 
def flatten(root):
    pq = []
    # push main linked list nodes to priority queue
    while root:
        heappush(pq, Cmp(root))
        root = root.right
    dummy = Node(0)
    temp = dummy
     
    # keep popping out the min node until there are no nodes left in priority queue
    while pq:
        node = heappop(pq).node
        temp.down = node
        temp = node
        # if bottom child exist add it to priority queue
        if node.down:
            heappush(pq, Cmp(node.down))
 
    return dummy.down
 
 
if __name__ == '__main__':
    L = LinkedList()
 
    '''
    Let us create the following linked list
            5 -> 10 -> 19 -> 28
            |    |     |     |
            V    V     V     V
            7    20    22    35
            |          |     |
            V          V     V
            8          50    40
            |                |
            V                V
            30               45
    '''
    L.head = L.push(L.head, 30)
    L.head = L.push(L.head, 8)
    L.head = L.push(L.head, 7)
    L.head = L.push(L.head, 5)
 
    L.head.right = L.push(L.head.right, 20)
    L.head.right = L.push(L.head.right, 10)
 
    L.head.right.right = L.push(L.head.right.right, 50)
    L.head.right.right = L.push(L.head.right.right, 22)
    L.head.right.right = L.push(L.head.right.right, 19)
 
    L.head.right.right.right = L.push(L.head.right.right.right, 45)
    L.head.right.right.right = L.push(L.head.right.right.right, 40)
    L.head.right.right.right = L.push(L.head.right.right.right, 35)
    L.head.right.right.right = L.push(L.head.right.right.right, 20)
 
flatten(L.head)
L.printList()


C#




// C# implementation for above approach
using System;
using System.Collections.Generic;
 
// Linked list Node
public class Node {
  public int data;
  public Node next;
  public Node bottom;
 
  public Node(int x) {
    data = x;
    next = null;
    bottom = null;
  }
}
 
// comparator function for priority queue
public class MyComp : IComparer<Node> {
  public int Compare(Node a, Node b) {
    return a.data.CompareTo(b.data);
  }
}
 
public class Program {
  public static void Flatten(Node root) {
    var p = new PriorityQueue<Node>(new MyComp());
    // pushing main link nodes into priority_queue.
    while (root != null) {
      p.Push(root);
      root = root.next;
    }
 
    // Extracting the minimum node
    // while priority queue is not empty
    while (!p.Empty()) {
 
      // extracting min
      var k = p.Top();
      p.Pop();
 
      // printing least element
      Console.Write(k.data + " ");
      if (k.bottom != null)
        p.Push(k.bottom);
    }
  }
 
  // Priority Queue implementation
  public class PriorityQueue<T> {
    private List<T> queue;
    private IComparer<T> comparer;
 
    public PriorityQueue(IComparer<T> comparer) {
      queue = new List<T>();
      this.comparer = comparer;
    }
 
    public void Push(T element) {
      queue.Add(element);
      Sort();
    }
 
    public T Pop() {
      var element = queue[0];
      queue.RemoveAt(0);
      return element;
    }
 
    public T Top() {
      return queue[0];
    }
 
    public int Size() {
      return queue.Count;
    }
 
    public bool Empty() {
      return queue.Count == 0;
    }
 
    private void Sort() {
      queue.Sort(comparer);
    }
  }
 
  // Driver's code
  public static void Main() {
    // This code builds the flattened linked list
    // of first picture in this article ;
    var head = new Node(5);
    var temp = head;
    var bt = head;
    bt.bottom = new Node(7);
    bt.bottom.bottom = new Node(8);
    bt.bottom.bottom.bottom = new Node(30);
    temp.next = new Node(10);
 
    temp = temp.next;
    bt = temp;
    bt.bottom = new Node(20);
    temp.next = new Node(19);
    temp = temp.next;
    bt = temp;
    bt.bottom = new Node(22);
    bt.bottom.bottom = new Node(50);
    temp.next = new Node(28);
    temp = temp.next;
    bt = temp;
    bt.bottom = new Node(35);
    bt.bottom.bottom = new Node(40);
    bt.bottom.bottom.bottom = new Node(45);
 
    // Function call
    Flatten(head);
    Console.WriteLine();
  }
}
 
// This code is contributed by Amit Mangal.


Javascript




// JavaScript code for the above approach
 
// Linked list Node
class Node {
    constructor(x) {
        this.data = x;
        this.next = null;
        this.bottom = null;
    }
}
 
// comparator function for priority queue
function mycomp(a, b) {
    return a.data > b.data;
}
 
function flatten(root) {
  const p = new PriorityQueue((a, b) => a.data - b.data);
 
  // pushing main link nodes into priority_queue.
  while (root != null) {
    p.push(root);
    root = root.next;
  }
 
  // Extracting the minimum node
  // while priority queue is not empty
  while (p.length !== 0) {
    // extracting min
    const k = p.pop();
 
  // printing least element
  if (k !== undefined) {
    process.stdout.write(`${k.data} `);
 
    if (k.bottom) p.push(k.bottom);
  }
 
  }
}
 
 
class PriorityQueue {
  constructor(comparator = (a, b) => a - b) {
    this.heap = [];
    this.comparator = comparator;
  }
 
  get size() {
    return this.heap.length;
  }
 
  isEmpty() {
    return this.size === 0;
  }
 
  peek() {
    return this.heap[0];
  }
 
  push(...values) {
    values.forEach(value => {
      this.heap.push(value);
      this.bubbleUp(this.heap.length - 1);
    });
  }
 
  pop() {
    const root = this.heap[0];
    const last = this.heap.pop();
 
    if (this.size > 0) {
      this.heap[0] = last;
      this.bubbleDown(0);
    }
 
    return root;
  }
 
  bubbleUp(index) {
    while (index > 0) {
      const parent = (index - 1) >> 1;
 
      if (this.comparator(this.heap[index], this.heap[parent]) < 0) {
        [this.heap[index], this.heap[parent]] = [this.heap[parent], this.heap[index]];
        index = parent;
      } else {
        break;
      }
    }
  }
 
  bubbleDown(index) {
    const last = this.heap.length - 1;
 
    while (true) {
      const left = (index << 1) + 1;
      const right = left + 1;
      let min = index;
 
      if (left <= last && this.comparator(this.heap[left], this.heap[min]) < 0) {
        min = left;
      }
 
      if (right <= last && this.comparator(this.heap[right], this.heap[min]) < 0) {
        min = right;
      }
 
      if (min !== index) {
        [this.heap[index], this.heap[min]] = [this.heap[min], this.heap[index]];
        index = min;
      } else {
        break;
      }
    }
  }
}
 
// Driver's code
(function main() {
    // This code builds the flattened linked list
    // of first picture in this article ;
    let head = new Node(5);
    let temp = head;
    let bt = head;
    bt.bottom = new Node(7);
    bt.bottom.bottom = new Node(8);
    bt.bottom.bottom.bottom = new Node(30);
    temp.next = new Node(10);
 
    temp = temp.next;
    bt = temp;
    bt.bottom = new Node(20);
    temp.next = new Node(19);
    temp = temp.next;
    bt = temp;
    bt.bottom = new Node(22);
    bt.bottom.bottom = new Node(50);
    temp.next = new Node(28);
    temp = temp.next;
    bt = temp;
    bt.bottom = new Node(35);
    bt.bottom.bottom = new Node(40);
    bt.bottom.bottom.bottom = new Node(45);
 
    // Function call
    flatten(head);
    console.log();
})();
 
// This code is contributed by Amit Mangal.


Output

5 7 8 10 19 20 22 28 30 35 40 45 50 

Time Complexity: O(N * M * log(N)) – where N is the no of nodes in the main linked list (reachable using the next pointer) and M is the no of nodes in a single sub-linked list (reachable using a bottom pointer).
Auxiliary Space: O(N) – where N is the no of nodes in the main linked list (reachable using the next pointer).

NOTE: In the above explanation, k means the Node which contains the minimum element.



Last Updated : 04 Dec, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads