Open In App

Determine whether a universal sink exists in a directed graph

Last Updated : 20 Feb, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Determine whether a universal sink exists in a directed graph. A universal sink is a vertex which has no edge emanating from it, and all other vertices have an edge towards the sink. 

Input : 
v1 -> v2 (implies vertex 1 is connected to vertex 2)
v3 -> v2
v4 -> v2
v5 -> v2
v6 -> v2                        
Output :
Sink found at vertex 2

Input : 
v1 -> v6
v2 -> v3
v2 -> v4
v4 -> v3
v5 -> v3
Output :
No Sink

We try to eliminate n – 1 non-sink vertices in O(n) time and check the remaining vertex for the sink property. 
To eliminate vertices, we check whether a particular index (A[i][j]) in the adjacency matrix is a 1 or a 0. If it is a 0, it means that the vertex corresponding to index j cannot be a sink. If the index is a 1, it means the vertex corresponding to i cannot be a sink. We keep increasing i and j in this fashion until either i or j exceeds the number of vertices. 
Using this method allows us to carry out the universal sink test for only one vertex instead of all n vertices. Suppose we are left with only vertex i. 
We now check for whether row i has only 0s and whether row j as only 1s except for A[i][i], which will be 0.

Illustration : 

v1 -> v2 
v3 -> v2
v4 -> v2
v5 -> v2
v6 -> v2                     
We can visualize the adjacency matrix for 
the above as follows:
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0 

We observe that vertex 2 does not have any emanating edge, and that every other vertex has an edge in vertex 2. At A[0][0] (A[i][j]), we encounter a 0, so we increment j and next look at A[0][1]. Here we encounter a 1. So we have to increment i by 1. A[1][1] is 0, so we keep increasing j. 

We notice that A[1][2], A[1][3].. etc are all 0, so j will exceed the number of vertices (6 in this example). We now check row i and column i for the sink property. Row i must be completely 0, and column i must be completely 1 except for the index A[i][i] 
 

Adjacency Matrix

Adjacency Matrix

Second Example: 

v1 -> v6
v2 -> v3
v2 -> v4
v4 -> v3
v5 -> v3
We can visualize the adjacency matrix
for the above as follows:
0 0 0 0 0 1
0 0 1 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

In this example, we observer that in row 1, every element is 0 except for the last column. So we will increment j until we reach the 1. When we reach 1, we increment i as long as the value of A[i][j] is 0. If i exceeds the number of vertices, it is not possible to have a sink, and in this case, i will exceed the number of vertices.
 

Adjacency Matrix

Adjacency Matrix

Implementation:

C++




#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100;
 
class Graph {
    int vertices;
    int adjacency_matrix[MAX][MAX];
 
public:
    Graph(int vertices)
    {
        this->vertices = vertices;
        memset(adjacency_matrix, 0,
               sizeof(adjacency_matrix));
    }
    void insert(int source, int destination)
    {
        adjacency_matrix[destination - 1] = 1;
    }
 
    bool is_sink(int i)
    {
        for (int j = 0; j < vertices; j++) {
            if (adjacency_matrix[i][j] == 1)
                return false;
            if (adjacency_matrix[j][i] == 0 && j != i)
                return false;
        }
        return true;
    }
 
    int eliminate()
    {
        int i = 0, j = 0;
        while (i < vertices && j < vertices) {
            if (adjacency_matrix[i][j] == 1)
                i = i + 1;
            else
                j = j + 1;
        }
 
        if (i > vertices)
            return -1;
        else if (!is_sink(i))
            return -1;
        else
            return i;
    }
};
 
int main()
{
    int number_of_vertices = 6, number_of_edges = 5;
    Graph g(number_of_vertices);
    g.insert(1, 6);
    g.insert(2, 3);
    g.insert(2, 4);
    g.insert(4, 3);
    g.insert(5, 3);
 
    int vertex = g.eliminate();
 
    if (vertex >= 0)
        cout << "Sink found at vertex " << (vertex + 1)
             << endl;
    else
        cout << "No Sink" << endl;
 
    return 0;
}
//This Code is Contributed by chinmaya121221


Java




// Java program to find whether a universal sink
// exists in a directed graph
import java.io.*;
import java.util.*;
 
class graph
{
    int vertices;
    int[][] adjacency_matrix;
 
    // constructor to initialize number of vertices and
    // size of adjacency matrix
    public graph(int vertices)
    {
        this.vertices = vertices;
        adjacency_matrix = new int[vertices][vertices];
    }
 
    public void insert(int source, int destination)
    {
        // make adjacency_matrix[i][j] = 1 if there is
        // an edge from i to j
        adjacency_matrix[destination-1] = 1;
    }
 
    public boolean issink(int i)
    {
        for (int j = 0 ; j < vertices ; j++)
        {
            // if any element in the row i is 1, it means
            // that there is an edge emanating from the
            // vertex, which means it cannot be a sink
            if (adjacency_matrix[i][j] == 1)
                return false;
 
            // if any element other than i in the column
            // i is 0, it means that there is no edge from
            // that vertex to the vertex we are testing
            // and hence it cannot be a sink
            if (adjacency_matrix[j][i] == 0 && j != i)
                return false;
        }
        //if none of the checks fails, return true
        return true;
    }
 
    // we will eliminate n-1 non sink vertices so that
    // we have to check for only one vertex instead of
    // all n vertices
    public int eliminate()
    {
        int i = 0, j = 0;
        while (i < vertices && j < vertices)
        {
            // If the index is 1, increment the row we are
            // checking by 1
            // else increment the column
            if (adjacency_matrix[i][j] == 1)
                i = i + 1;
            else
                j = j + 1;
 
        }
 
        // If i exceeds the number of vertices, it
        // means that there is no valid vertex in
        // the given vertices that can be a sink
        if (i > vertices)
            return -1;
        else if (!issink(i))
            return -1;
        else return i;
    }
}
 
public class Sink
{
    public static void main(String[] args)throws IOException
    {
        int number_of_vertices = 6;
        int number_of_edges = 5;
        graph g = new graph(number_of_vertices);
        /*
        //input set 1
        g.insert(1, 6);
        g.insert(2, 6);
        g.insert(3, 6);
        g.insert(4, 6);
        g.insert(5, 6);
        */
        //input set 2
        g.insert(1, 6);
        g.insert(2, 3);
        g.insert(2, 4);
        g.insert(4, 3);
        g.insert(5, 3);
 
        int vertex = g.eliminate();
 
        // returns 0 based indexing of vertex. returns
        // -1 if no sink exits.
        // returns the vertex number-1 if sink is found
        if (vertex >= 0)
            System.out.println("Sink found at vertex "
                                     + (vertex + 1));
        else
            System.out.println("No Sink");
    }
}


Python3




# Python3 program to find whether a
# universal sink exists in a directed graph
class Graph:
 
    # constructor to initialize number of
    # vertices and size of adjacency matrix
    def __init__(self, vertices):
        self.vertices = vertices
        self.adjacency_matrix = [[0 for i in range(vertices)]
                                    for j in range(vertices)]
 
    def insert(self, s, destination):
 
        # make adjacency_matrix[i][j] = 1
        # if there is an edge from i to j
        self.adjacency_matrix[s - 1][destination - 1] = 1
 
    def issink(self, i):
        for j in range(self.vertices):
 
            # if any element in the row i is 1, it means
            # that there is an edge emanating from the
            # vertex, which means it cannot be a sink
            if self.adjacency_matrix[i][j] == 1:
                return False
 
            # if any element other than i in the column
            # i is 0, it means that there is no edge from
            # that vertex to the vertex we are testing
            # and hence it cannot be a sink
            if self.adjacency_matrix[j][i] == 0 and j != i:
                return False
 
        # if none of the checks fails, return true
        return True
 
    # we will eliminate n-1 non sink vertices so that
    # we have to check for only one vertex instead of
    # all n vertices
    def eliminate(self):
        i = 0
        j = 0
        while i < self.vertices and j < self.vertices:
 
            # If the index is 1, increment the row
            # we are checking by 1
            # else increment the column
            if self.adjacency_matrix[i][j] == 1:
                i += 1
            else:
                j += 1
 
        # If i exceeds the number of vertices, it
        # means that there is no valid vertex in
        # the given vertices that can be a sink
        if i > self.vertices:
            return -1
        elif self.issink(i) is False:
            return -1
        else:
            return i
 
# Driver Code
if __name__ == "__main__":
 
    number_of_vertices = 6
    number_of_edges = 5
    g = Graph(number_of_vertices)
 
    # input set 1
    # g.insert(1, 6)
    # g.insert(2, 6)
    # g.insert(3, 6)
    # g.insert(4, 6)
    # g.insert(5, 6)
     
    # input set 2
    g.insert(1, 6)
    g.insert(2, 3)
    g.insert(2, 4)
    g.insert(4, 3)
    g.insert(5, 3)
 
    vertex = g.eliminate()
 
    # returns 0 based indexing of vertex.
    # returns -1 if no sink exits.
    # returns the vertex number-1 if sink is found
    if vertex >= 0:
        print("Sink found at vertex %d" % (vertex + 1))
    else:
        print("No Sink")
 
# This code is contributed by
# sanjeev2552


C#




// C# program to find whether a universal sink
// exists in a directed graph
using System;
using System.Collections.Generic;
 
class graph
{
    int vertices, itr;
    int[,] adjacency_matrix;
 
    // constructor to initialize number of vertices and
    // size of adjacency matrix
    public graph(int vertices)
    {
        this.vertices = vertices;
        adjacency_matrix = new int[vertices, vertices];
    }
 
    public void insert(int source, int destination)
    {
        // make adjacency_matrix[i,j] = 1 if there is
        // an edge from i to j
        adjacency_matrix = 1;
    }
 
    public bool issink(int i)
    {
        for (int j = 0 ; j < vertices ; j++)
        {
            // if any element in the row i is 1, it means
            // that there is an edge emanating from the
            // vertex, which means it cannot be a sink
            if (adjacency_matrix[i, j] == 1)
                return false;
 
            // if any element other than i in the column
            // i is 0, it means that there is no edge from
            // that vertex to the vertex we are testing
            // and hence it cannot be a sink
            if (adjacency_matrix[j, i] == 0 && j != i)
                return false;
        }
        //if none of the checks fails, return true
        return true;
    }
 
    // we will eliminate n-1 non sink vertices so that
    // we have to check for only one vertex instead of
    // all n vertices
    public int eliminate()
    {
        int i = 0, j = 0;
        while (i < vertices && j < vertices)
        {
            // If the index is 1, increment the row we are
            // checking by 1
            // else increment the column
            if (adjacency_matrix[i, j] == 1)
                i = i + 1;
            else
                j = j + 1;
 
        }
 
        // If i exceeds the number of vertices, it
        // means that there is no valid vertex in
        // the given vertices that can be a sink
        if (i > vertices)
            return -1;
        else if (!issink(i))
            return -1;
        else return i;
    }
}
 
public class Sink
{
    public static void Main(String[] args)
    {
        int number_of_vertices = 6;
        graph g = new graph(number_of_vertices);
        /*
        //input set 1
        g.insert(1, 6);
        g.insert(2, 6);
        g.insert(3, 6);
        g.insert(4, 6);
        g.insert(5, 6);
        */
        //input set 2
        g.insert(1, 6);
        g.insert(2, 3);
        g.insert(2, 4);
        g.insert(4, 3);
        g.insert(5, 3);
 
        int vertex = g.eliminate();
 
        // returns 0 based indexing of vertex. returns
        // -1 if no sink exits.
        // returns the vertex number-1 if sink is found
        if (vertex >= 0)
            Console.WriteLine("Sink found at vertex "
                                    + (vertex + 1));
        else
            Console.WriteLine("No Sink");
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript program to find whether a
// universal sink exists in a directed graph
class Graph{
 
    // constructor to initialize number of
    // vertices and size of adjacency matrix
    constructor(vertices){
        this.vertices = vertices
        this.adjacency_matrix = new Array(this.vertices).fill(0).map(()=>new Array(this.vertices).fill(0))
    }
 
    insert(s, destination){
 
        // make adjacency_matrix[i][j] = 1
        // if there is an edge from i to j
        this.adjacency_matrix[s - 1][destination - 1] = 1
    }
 
    issink(i){
        for(let j=0;j<this.vertices;j++){
 
            // if any element in the row i is 1, it means
            // that there is an edge emanating from the
            // vertex, which means it cannot be a sink
            if(this.adjacency_matrix[i][j] == 1)
                return false
 
            // if any element other than i in the column
            // i is 0, it means that there is no edge from
            // that vertex to the vertex we are testing
            // and hence it cannot be a sink
            if(this.adjacency_matrix[j][i] == 0 && j != i)
                return false
        }
 
        // if none of the checks fails, return true
        return true
    }
 
    // we will eliminate n-1 non sink vertices so that
    // we have to check for only one vertex instead of
    // all n vertices
    eliminate(){
        let i = 0
        let j = 0
        while(i < this.vertices && j < this.vertices){
 
            // If the index is 1, increment the row
            // we are checking by 1
            // else increment the column
            if(this.adjacency_matrix[i][j] == 1)
                i += 1
            else
                j += 1
        }
 
        // If i exceeds the number of vertices, it
        // means that there is no valid vertex in
        // the given vertices that can be a sink
        if(i > this.vertices)
            return -1
        else if(this.issink(i) == false)
            return -1
        else
            return i
    }
}
 
// Driver Code
 
let number_of_vertices = 6
let number_of_edges = 5
let g = new Graph(number_of_vertices)
 
// input set 1
// g.insert(1, 6)
// g.insert(2, 6)
// g.insert(3, 6)
// g.insert(4, 6)
// g.insert(5, 6)
 
// input set 2
g.insert(1, 6)
g.insert(2, 3)
g.insert(2, 4)
g.insert(4, 3)
g.insert(5, 3)
 
let vertex = g.eliminate()
 
// returns 0 based indexing of vertex.
// returns -1 if no sink exits.
// returns the vertex number-1 if sink is found
if(vertex >= 0)
    document.write(`Sink found at vertex ${(vertex + 1)}`,"</br>")
else
    document.write("No Sink","</br>")
 
// This code is contributed by shinjanpatra
 
</script>


Output

No Sink

This program eliminates non-sink vertices in O(n) complexity and checks for the sink property in O(n) complexity.

Time complexity: O(V^2)

We have used a 2-D array of size V x V to store the adjacency matrix of the given graph. The time complexity of the algorithm is O(V^2) as we need to traverse the complete adjacency matrix to find the sink vertex. 

Time complexity: O(V^2)

The space complexity of the algorithm is also O(V^2) since we need to store the adjacency matrix.

You may also try The Celebrity Problem, which is an application of this concept

 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads