# Convert a normal BST to Balanced BST

Given a BST (Binary Search Tree) that may be unbalanced, convert it into a balanced BST that has minimum possible height.

Examples :

```Input:
30
/
20
/
10
Output:
20
/   \
10     30

Input:
4
/
3
/
2
/
1
Output:
3            3           2
/  \         /  \        /  \
1    4   OR  2    4  OR  1    3   OR ..
\          /                   \
2        1                     4

Input:
4
/   \
3     5
/       \
2         6
/           \
1             7
Output:
4
/    \
2      6
/  \    /  \
1    3  5    7
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A Simple Solution is to traverse nodes in Inorder and one by one insert into a self-balancing BST like AVL tree. Time complexity of this solution is O(n Log n) and this solution doesn’t guarantee

An Efficient Solution can construct balanced BST in O(n) time with minimum possible height. Below are steps.

1. Traverse given BST in inorder and store result in an array. This step takes O(n) time. Note that this array would be sorted as inorder traversal of BST always produces sorted sequence.
2. Build a balanced BST from the above created sorted array using the recursive approach discussed here. This step also takes O(n) time as we traverse every element exactly once and processing an element takes O(1) time.

Below is C++ implementation of above steps.

## C++

```// C++ program to convert a left unbalanced BST to
// a balanced BST
#include <bits/stdc++.h>
using namespace std;

struct Node
{
int data;
Node* left,  *right;
};

/* This function traverse the skewed binary tree and
stores its nodes pointers in vector nodes[] */
void storeBSTNodes(Node* root, vector<Node*> &nodes)
{
// Base case
if (root==NULL)
return;

// Store nodes in Inorder (which is sorted
// order for BST)
storeBSTNodes(root->left, nodes);
nodes.push_back(root);
storeBSTNodes(root->right, nodes);
}

/* Recursive function to construct binary tree */
Node* buildTreeUtil(vector<Node*> &nodes, int start,
int end)
{
// base case
if (start > end)
return NULL;

/* Get the middle element and make it root */
int mid = (start + end)/2;
Node *root = nodes[mid];

/* Using index in Inorder traversal, construct
left and right subtress */
root->left  = buildTreeUtil(nodes, start, mid-1);
root->right = buildTreeUtil(nodes, mid+1, end);

return root;
}

// This functions converts an unbalanced BST to
// a balanced BST
Node* buildTree(Node* root)
{
// Store nodes of given BST in sorted order
vector<Node *> nodes;
storeBSTNodes(root, nodes);

// Constucts BST from nodes[]
int n = nodes.size();
return buildTreeUtil(nodes, 0, n-1);
}

// Utility function to create a new node
Node* newNode(int data)
{
Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return (node);
}

/* Function to do preorder traversal of tree */
void preOrder(Node* node)
{
if (node == NULL)
return;
printf("%d ", node->data);
preOrder(node->left);
preOrder(node->right);
}

// Driver program
int main()
{
/* Constructed skewed binary tree is
10
/
8
/
7
/
6
/
5   */

Node* root = newNode(10);
root->left = newNode(8);
root->left->left = newNode(7);
root->left->left->left = newNode(6);
root->left->left->left->left = newNode(5);

root = buildTree(root);

printf("Preorder traversal of balanced "
"BST is : \n");
preOrder(root);

return 0;
}
```

## Java

```// Java program to convert a left unbalanced BST to a balanced BST

import java.util.*;

/* A binary tree node has data, pointer to left child
and a pointer to right child */
class Node
{
int data;
Node left, right;

public Node(int data)
{
this.data = data;
left = right = null;
}
}

class BinaryTree
{
Node root;

/* This function traverse the skewed binary tree and
stores its nodes pointers in vector nodes[] */
void storeBSTNodes(Node root, Vector<Node> nodes)
{
// Base case
if (root == null)
return;

// Store nodes in Inorder (which is sorted
// order for BST)
storeBSTNodes(root.left, nodes);
storeBSTNodes(root.right, nodes);
}

/* Recursive function to construct binary tree */
Node buildTreeUtil(Vector<Node> nodes, int start,
int end)
{
// base case
if (start > end)
return null;

/* Get the middle element and make it root */
int mid = (start + end) / 2;
Node node = nodes.get(mid);

/* Using index in Inorder traversal, construct
left and right subtress */
node.left = buildTreeUtil(nodes, start, mid - 1);
node.right = buildTreeUtil(nodes, mid + 1, end);

return node;
}

// This functions converts an unbalanced BST to
// a balanced BST
Node buildTree(Node root)
{
// Store nodes of given BST in sorted order
Vector<Node> nodes = new Vector<Node>();
storeBSTNodes(root, nodes);

// Constucts BST from nodes[]
int n = nodes.size();
return buildTreeUtil(nodes, 0, n - 1);
}

/* Function to do preorder traversal of tree */
void preOrder(Node node)
{
if (node == null)
return;
System.out.print(node.data + " ");
preOrder(node.left);
preOrder(node.right);
}

// Driver program to test the above functions
public static void main(String[] args)
{
/* Constructed skewed binary tree is
10
/
8
/
7
/
6
/
5   */
BinaryTree tree = new BinaryTree();
tree.root = new Node(10);
tree.root.left = new Node(8);
tree.root.left.left = new Node(7);
tree.root.left.left.left = new Node(6);
tree.root.left.left.left.left = new Node(5);

tree.root = tree.buildTree(tree.root);
System.out.println("Preorder traversal of balanced BST is :");
tree.preOrder(tree.root);
}
}

// This code has been contributed by Mayank Jaiswal(mayank_24)
```

Output :

```Preorder traversal of balanced BST is :
7 5 6 8 10 ```

# GATE CS Corner    Company Wise Coding Practice

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.
2.7 Average Difficulty : 2.7/5.0
Based on 26 vote(s)