Open In App

Construct a tree from Inorder and Level order traversals | Set 2

Improve
Improve
Like Article
Like
Save
Share
Report

Given inorder and level-order traversals of a Binary Tree, construct the Binary Tree. Following is an example to illustrate the problem.

Examples: 

Input: Two arrays that represent Inorder
       and level order traversals of a 
       Binary Tree
in[]    = {4, 8, 10, 12, 14, 20, 22};
level[] = {20, 8, 22, 4, 12, 10, 14};

Output: Construct the tree represented 
        by the two arrays.
        For the above two arrays, the 
        constructed tree is shown.

We have discussed a solution in below post that works in O(N^3) 
Construct a tree from Inorder and Level order traversals | Set 1

Approach: Following algorithm uses O(N^2) time complexity to solve the above problem using the unordered_set data structure in c++ (basically making a hash-table) to put the values of left subtree of the current root and later and we will check in O(1) complexity to find if the current levelOrder node is part of left subtree or not.
If it is the part of left subtree then add in one lLevel array for left otherwise add it to rLevel array for right subtree.

Below is the implementation with the above idea :

C++




/* program to construct tree using inorder
   and levelorder traversals */
#include <bits/stdc++.h>
using namespace std;
 
/* A binary tree node */
struct Node
{
    int key;
    struct Node* left, *right;
};
 
Node* makeNode(int data){
    Node* newNode = new Node();
    newNode->key = data;
    newNode->right = newNode->right = NULL;
    return newNode;
}
 
// Function to build tree from given
// levelorder and inorder
Node* buildTree(int inorder[], int levelOrder[],
                int iStart, int iEnd, int n)
{
    if (n <= 0)
          return NULL;
 
    // First node of level order is root
    Node* root = makeNode(levelOrder[0]);
 
    // Search root in inorder
    int index = -1;
    for (int i=iStart; i<=iEnd; i++){
        if (levelOrder[0] == inorder[i]){
            index = i;
            break;
        }
    }
 
    // Insert all left nodes in hash table
    unordered_set<int> s;
    for (int i=iStart;i<index;i++)
        s.insert(inorder[i]);
     
    // Separate level order traversals
    // of left and right subtrees.
    int lLevel[s.size()];  // Left
    int rLevel[iEnd-iStart-s.size()]; // Right
    int li = 0, ri = 0;
    for (int i=1;i<n;i++) {
        if (s.find(levelOrder[i]) != s.end())
            lLevel[li++] = levelOrder[i];
        else
            rLevel[ri++] = levelOrder[i];       
    }
 
    // Recursively build left and right
    // subtrees and return root.
    root->left = buildTree(inorder, lLevel,
                 iStart, index-1, index-iStart);
    root->right = buildTree(inorder, rLevel,
                  index+1, iEnd, iEnd-index);
    return root;
 
}
 
/* Utility function to print inorder
traversal of binary tree */
void printInorder(Node* node)
{
    if (node == NULL)
       return;
    printInorder(node->left);
    cout << node->key << " ";
    printInorder(node->right);
}
 
// Driver Code
int main()
{
    int in[] = {4, 8, 10, 12, 14, 20, 22};
    int level[] = {20, 8, 22, 4, 12, 10, 14};
    int n = sizeof(in)/sizeof(in[0]);
    Node *root = buildTree(in, level, 0,
                           n - 1, n);
 
    /* Let us test the built tree by
     printing Inorder traversal */
    cout << "Inorder traversal of the "
            "constructed tree is \n";
    printInorder(root);
 
    return 0;
}


Java




/*
 * program to construct tree using inorder
 * and levelorder traversals
 */
import java.util.HashSet;
class GFG
{
 
  /* A binary tree node */
  static class Node {
    int key;
    Node left, right;
  };
 
  static Node makeNode(int data) {
    Node newNode = new Node();
    newNode.key = data;
    newNode.right = newNode.right = null;
    return newNode;
  }
 
  // Function to build tree from given
  // levelorder and inorder
  static Node buildTree(int inorder[], int levelOrder[], int iStart, int iEnd, int n) {
    if (n <= 0)
      return null;
 
    // First node of level order is root
    Node root = makeNode(levelOrder[0]);
 
    // Search root in inorder
    int index = -1;
    for (int i = iStart; i <= iEnd; i++) {
      if (levelOrder[0] == inorder[i]) {
        index = i;
        break;
      }
    }
 
    // Insert all left nodes in hash table
    HashSet<Integer> s = new HashSet<>();
    for (int i = iStart; i < index; i++)
      s.add(inorder[i]);
 
    // Separate level order traversals
    // of left and right subtrees.
    int[] lLevel = new int[s.size()]; // Left
    int[] rLevel = new int[iEnd - iStart - s.size()]; // Right
    int li = 0, ri = 0;
    for (int i = 1; i < n; i++) {
      if (s.contains(levelOrder[i]))
        lLevel[li++] = levelOrder[i];
      else
        rLevel[ri++] = levelOrder[i];
    }
 
    // Recursively build left and right
    // subtrees and return root.
    root.left = buildTree(inorder, lLevel, iStart, index - 1, index - iStart);
    root.right = buildTree(inorder, rLevel, index + 1, iEnd, iEnd - index);
    return root;
 
  }
 
  /*
     * Utility function to print inorder
     * traversal of binary tree
     */
  static void printInorder(Node node) {
    if (node == null)
      return;
    printInorder(node.left);
    System.out.print(node.key + " ");
    printInorder(node.right);
  }
 
  // Driver Code
  public static void main(String[] args) {
 
    int in[] = { 4, 8, 10, 12, 14, 20, 22 };
    int level[] = { 20, 8, 22, 4, 12, 10, 14 };
    int n = in.length;
    Node root = buildTree(in, level, 0, n - 1, n);
 
    /*
         * Let us test the built tree by
         * printing Inorder traversal
         */
    System.out.println("Inorder traversal of the constructed tree is ");
    printInorder(root);
 
  }
}
 
// This code is contributed by sanjeev2552


Python3




# program to construct tree using inorder and levelorder traversals
import collections
 
class Node:
    # A binary tree node
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
 
def makeNode(data):
    newNode = Node(data)
    return newNode
 
# Function to build tree from given levelorder and inorder
def buildTree(inorder, levelOrder, iStart, iEnd):
    n = len(levelOrder)
    if n <= 0:
        return None
 
    # First node of level order is root
    root = makeNode(levelOrder[0])
 
    # Search root in inorder
    index = -1
    for i in range(iStart, iEnd+1):
        if levelOrder[0] == inorder[i]:
            index = i
            break
 
    # Insert all left nodes in hash table
    s = set()
    for i in range(iStart, index):
        s.add(inorder[i])
 
    # Separate level order traversals of left and right subtrees.
    lLevel = []
    rLevel = []
    li = 0
    ri = 0
    for i in range(1, n):
        if levelOrder[i] in s:
            lLevel.append(levelOrder[i])
            li += 1
        else:
            rLevel.append(levelOrder[i])
            ri += 1
 
    # Recursively build left and right subtrees and return root
    root.left = buildTree(inorder, lLevel, iStart, index-1)
    root.right = buildTree(inorder, rLevel, index+1, iEnd)
    return root
 
# Utility function to print inorder traversal of binary tree
def printInorder(node):
    if node is None:
        return
    printInorder(node.left)
    print(node.key, end=' ')
    printInorder(node.right)
 
# Driver Code
if __name__ == '__main__':
    inOrder = [4, 8, 10, 12, 14, 20, 22]
    levelOrder = [20, 8, 22, 4, 12, 10, 14]
    n = len(inOrder)
    root = buildTree(inOrder, levelOrder, 0, n-1)
 
    # Let us test the built tree by printing Inorder traversal
    print("Inorder traversal of the constructed tree is ")
    printInorder(root)


C#




/*
 * program to construct tree using inorder
 * and levelorder traversals
 */
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG {
 
  /* A binary tree node */
  public class Node {
    public int key;
    public Node left, right;
  };
 
  static Node makeNode(int data)
  {
    Node newNode = new Node();
    newNode.key = data;
    newNode.right = newNode.right = null;
    return newNode;
  }
 
  // Function to build tree from given
  // levelorder and inorder
  static Node buildTree(int[] inorder, int[] levelOrder,
                        int iStart, int iEnd, int n)
  {
    if (n <= 0)
      return null;
 
    // First node of level order is root
    Node root = makeNode(levelOrder[0]);
 
    // Search root in inorder
    int index = -1;
    for (int i = iStart; i <= iEnd; i++) {
      if (levelOrder[0] == inorder[i]) {
        index = i;
        break;
      }
    }
 
    // Insert all left nodes in hash table
    HashSet<int> s = new HashSet<int>();
    for (int i = iStart; i < index; i++)
      s.Add(inorder[i]);
 
    // Separate level order traversals
    // of left and right subtrees.
    int[] lLevel = new int[s.Count]; // Left
    int[] rLevel
      = new int[iEnd - iStart - s.Count]; // Right
    int li = 0, ri = 0;
    for (int i = 1; i < n; i++) {
      if (s.Contains(levelOrder[i]))
        lLevel[li++] = levelOrder[i];
      else
        rLevel[ri++] = levelOrder[i];
    }
 
    // Recursively build left and right
    // subtrees and return root.
    root.left = buildTree(inorder, lLevel, iStart,
                          index - 1, index - iStart);
    root.right = buildTree(inorder, rLevel, index + 1,
                           iEnd, iEnd - index);
    return root;
  }
 
  /*
     * Utility function to print inorder
     * traversal of binary tree
     */
  static void printInorder(Node node)
  {
    if (node == null)
      return;
    printInorder(node.left);
    Console.Write(node.key + " ");
    printInorder(node.right);
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
 
    int[] inorder
      = new int[] { 4, 8, 10, 12, 14, 20, 22 };
    int[] level
      = new int[] { 20, 8, 22, 4, 12, 10, 14 };
    int n = inorder.Length;
    Node root = buildTree(inorder, level, 0, n - 1, n);
 
    /*
         * Let us test the built tree by
         * printing Inorder traversal
         */
    Console.WriteLine(
      "Inorder traversal of the constructed tree is ");
    printInorder(root);
  }
}
 
// This code is contributed by Karandeep1234


Javascript




<script>
    /*
     program to construct tree using inorder
     and levelorder traversals
     */
      
     /* A binary tree node */
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.key = data;
        }
    }
 
    function makeNode(data) {
      let newNode = new Node(data);
      return newNode;
    }
 
    // Function to build tree from given
    // levelorder and inorder
    function buildTree(inorder, levelOrder, iStart, iEnd, n) {
      if (n <= 0)
        return null;
 
      // First node of level order is root
      let root = makeNode(levelOrder[0]);
 
      // Search root in inorder
      let index = -1;
      for (let i = iStart; i <= iEnd; i++) {
        if (levelOrder[0] == inorder[i]) {
          index = i;
          break;
        }
      }
 
      // Insert all left nodes in hash table
      let s = new Set();
      for (let i = iStart; i < index; i++)
        s.add(inorder[i]);
 
      // Separate level order traversals
      // of left and right subtrees.
      let lLevel = new Array(s.size); // Left
      let rLevel = new Array(iEnd - iStart - s.size); // Right
      let li = 0, ri = 0;
      for (let i = 1; i < n; i++) {
        if (s.has(levelOrder[i]))
          lLevel[li++] = levelOrder[i];
        else
          rLevel[ri++] = levelOrder[i];
      }
 
      // Recursively build left and right
      // subtrees and return root.
      root.left = buildTree(inorder, lLevel, iStart, index - 1,
      index - iStart);
      root.right = buildTree(inorder, rLevel, index + 1, iEnd,
      iEnd - index);
      return root;
 
    }
 
    /*
       * Utility function to print inorder
       * traversal of binary tree
       */
    function printInorder(node) {
      if (node == null)
        return;
      printInorder(node.left);
      document.write(node.key + " ");
      printInorder(node.right);
    }
     
    let In = [ 4, 8, 10, 12, 14, 20, 22 ];
    let level = [ 20, 8, 22, 4, 12, 10, 14 ];
    let n = In.length;
    let root = buildTree(In, level, 0, n - 1, n);
  
    /*
         * Let us test the built tree by
         * printing Inorder traversal
         */
    document.write("Inorder traversal of the constructed tree is " +
    "</br>");
    printInorder(root);
 
</script>


Output

Inorder traversal of the constructed tree is 
4 8 10 12 14 20 22 

Time Complexity: O(N^2)

Optimization: Without separate level order traversal arrays of left and right subtrees.

Approach: Using Hashing.

Use a HashMap to store the indices of level order traversal. In the range of start & end from inorder, search the element with the least index from the level order map. Create left and right subtrees recursively.

index -> the least index
for left subtree: start to index-1
for right subtree: index+1 to end

Implementation:

C++




// C++ Program to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
// Node Structure
struct Node {
    int data;
    Node* left;
    Node* right;
    Node(int data)
    {
        this->data = data;
        this->left = NULL;
        this->right = NULL;
    }
};
 
map<int, int> mp;
 
// function to construct hashmap
void constructMap(int level[], int n)
{
    for (int i = 0; i < n; i++) {
        mp[level[i]] = i;
    }
}
 
// function to construct binary tree from inorder and
// levelorder traversal
Node* construct(int in[], int start, int end)
{
    // if start is greater than end return null
    if (start > end)
        return NULL;
 
    int min_index = start;
 
    // In the range of start & end from inorder, search the
    // element with least index from level order map
    for (int i = start + 1; i <= end; i++) {
        int temp = in[i];
        // if current element from inorder have least index
        // in levelorder map, update min_index
        if (mp[in[min_index]] > mp[temp])
            min_index = i;
    }
 
    // create a node with current element
    Node* root = new Node(in[min_index]);
 
    // if start is equal to end, then return root
    if (start == end)
        return root;
 
    // construct left and right subtrees
    root->left = construct(in, start, min_index - 1);
    root->right = construct(in, min_index + 1, end);
    return root;
}
 
// Function to print inorder traversal
void printInorder(Node* node)
{
    if (node == NULL)
        return;
    printInorder(node->left);
    cout << node->data << " ";
    printInorder(node->right);
}
 
// Driver Function
int main()
{
    int in[] = { 4, 8, 10, 12, 14, 20, 22 };
    int level[] = { 20, 8, 22, 4, 12, 10, 14 };
    int size = sizeof(level) / sizeof(level[0]);
    // function calls
    constructMap(level, size);
    int n = mp.size();
    Node* root = construct(in, 0, n - 1);
    printInorder(root);
    return 0;
}
// This code is contributed by Yash
// Agarwal(yashagarwal2852002)


Java




import java.util.HashMap;
 
//class Node
class Node{
    int data;
    Node left,right;
    Node(int data){
        this.data = data;
        left = right = null;
    }
}
 
public class ConstructTree {
     
    //hashmap to store the indices of levelorder array
    HashMap<Integer,Integer> map = new HashMap<>();
     
    //function to construct hashmap
    void constructMap(int level[]) {
        for(int i=0;i<level.length;i++)
            map.put(level[i], i);
    }
     
    //function to construct binary tree from inorder and levelorder
    Node construct(int in[],int start,int end) {
        //if start is greater than end return null
        if(start > end)
            return null;
         
        int min_index = start;
         
        //In the range of start & end from inorder, search the element
        //with least index from level order map
        for(int i=start+1;i<=end;i++) {
            int temp = in[i];
            //if current element from inorder have least index in
            //levelorder map, update min_index
            if(map.get(in[min_index]) > map.get(temp))
                min_index = i;
        }
         
        //create a node with current element
        Node root = new Node(in[min_index]);
         
        //if start is equal to end, then return root
        if(start == end)
            return root;
         
        //construct left and right subtrees
        root.left = construct(in,start,min_index-1);
        root.right = construct(in,min_index+1,end);
         
        return root;
    }
     
    //function to print inorder
    void printInorder(Node node) {
        if (node == null)
          return;
        printInorder(node.left);
        System.out.print(node.data + " ");
        printInorder(node.right);
      }
     
    //Driver function
    public static void main(String[] args) {
        ConstructTree tree = new ConstructTree();
         
        int in[]    = {4, 8, 10, 12, 14, 20, 22};
        int level[] = {20, 8, 22, 4, 12, 10, 14};
         
        //function calls
        tree.constructMap(level);
        int n = level.length;
        Node root = tree.construct(in, 0, n-1);
        tree.printInorder(root);
    }
}
 
//This method is contributed by Likhita AVL


Python3




from typing import List
from collections import deque
 
# class Node
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
class ConstructTree:
     
    def __init__(self):
        # dictionary to store the indices of levelorder array
        self.map = {}
 
    # function to construct hashmap
    def constructMap(self, level: List[int]) -> None:
        for i in range(len(level)):
            self.map[level[i]] = i
     
    # function to construct binary tree from inorder and levelorder
    def construct(self, in_: List[int], start: int, end: int) -> Node:
        # if start is greater than end return None
        if start > end:
            return None
         
        min_index = start
         
        # In the range of start & end from inorder, search the element
        # with least index from level order map
        for i in range(start + 1, end + 1):
            temp = in_[i]
            # if current element from inorder have least index in
            # levelorder map, update min_index
            if self.map[in_[min_index]] > self.map[temp]:
                min_index = i
         
        # create a node with current element
        root = Node(in_[min_index])
         
        # if start is equal to end, then return root
        if start == end:
            return root
         
        # construct left and right subtrees
        root.left = self.construct(in_, start, min_index - 1)
        root.right = self.construct(in_, min_index + 1, end)
         
        return root
     
    # function to print inorder
    def printInorder(self, node: Node) -> None:
        if node is None:
            return
        self.printInorder(node.left)
        print(node.data, end=" ")
        self.printInorder(node.right)
     
    # Driver function
    def main(self) -> None:
        tree = ConstructTree()
         
        in_ = [4, 8, 10, 12, 14, 20, 22]
        level = [20, 8, 22, 4, 12, 10, 14]
         
        # function calls
        tree.constructMap(level)
        n = len(level)
        root = tree.construct(in_, 0, n-1)
        tree.printInorder(root)
 
if __name__ == "__main__":
    t = ConstructTree()
    t.main()


C#




using System;
using System.Collections.Generic;
 
public class Node
{
    public int data;
    public Node left, right;
 
    public Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
 
public class BinaryTree
{
    public static Dictionary<int, int> mp = new Dictionary<int, int>();
 
    // function to construct hashmap
    public static void constructMap(int[] level, int n)
    {
        for (int i = 0; i < n; i++)
        {
            mp[level[i]] = i;
        }
    }
 
    // function to construct binary tree from inorder and
    // levelorder traversal
    public static Node construct(int[] inOrder, int start, int end)
    {
        // if start is greater than end return null
        if (start > end)
            return null;
 
        int min_index = start;
 
        // In the range of start & end from inorder, search the
        // element with least index from level order map
        for (int i = start + 1; i <= end; i++)
        {
            int temp = inOrder[i];
            // if current element from inorder have least index
            // in levelorder map, update min_index
            if (mp[inOrder[min_index]] > mp[temp])
                min_index = i;
        }
 
        // create a node with current element
        Node root = new Node(inOrder[min_index]);
 
        // if start is equal to end, then return root
        if (start == end)
            return root;
 
        // construct left and right subtrees
        root.left = construct(inOrder, start, min_index - 1);
        root.right = construct(inOrder, min_index + 1, end);
        return root;
    }
 
    // Function to print inorder traversal
    public static void printInorder(Node node)
    {
        if (node == null)
            return;
        printInorder(node.left);
        Console.Write(node.data + " ");
        printInorder(node.right);
    }
 
    // Driver Function
    public static void Main()
    {
        int[] inOrder = { 4, 8, 10, 12, 14, 20, 22 };
        int[] levelOrder = { 20, 8, 22, 4, 12, 10, 14 };
        int n = levelOrder.Length;
 
        // function calls
        constructMap(levelOrder, n);
        Node root = construct(inOrder, 0, n - 1);
        printInorder(root);
    }
}


Javascript




// JavaScript program to implement above approach
// Node structure
class Node{
    constructor(data){
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
let mp = new Map();
 
// function to construct hashmap
function constructMap(level, n){
    for(let i = 0; i<n; i++){
        mp.set(level[i], i);
    }
}
 
// function to construct binary tree from inorder and
// levelorder traversal
function construct(IN, start, end){
    // if start is greater then end return null
    if(start > end) return null;
     
    let min_index = start;
     
    // In the range of start and end from inorder, search the
    // element with least index from level order map
    for(let i = start+1; i<=end; i++){
        let temp = IN[i];
         
        // if current element from inorder have least index
        // in levelroder map, update min_index
        if(mp.get(IN[min_index]) > mp.get(temp)){
            min_index = i;
        }
    }
     
    // create a node with current element
    let root = new Node(IN[min_index]);
     
    // if start is equal to end, then return root
    if(start == end)
        return root;
     
    // construct left and right subtrees
    root.left = construct(IN, start, min_index-1);
    root.right = construct(IN, min_index+1, end);
    return root;
}
 
// function to print inorder traversal
function printInorder(node){
    if(node == null)
        return;
    printInorder(node.left);
    console.log(node.data + " ");
    printInorder(node.right);
}
 
// driver function
let IN = [4, 8, 10, 12, 14, 20, 22];
let level = [20, 8, 22, 4, 12, 10, 14];
let size = level.length;
 
// function calls
constructMap(level, size);
let n = mp.size;
let root = construct(IN, 0, n-1);
printInorder(root);
 
// this code is contributed by Kirit Agarwal(kirtiagarwal23121999)


Output

4 8 10 12 14 20 22 

Time Complexity: O(n^2).

Another approach using queue.

C++




//{ Driver Code Starts
#include <bits/stdc++.h>
 
using namespace std;
struct Node {
    int key;
    struct Node* left;
    struct Node* right;
 
    Node(int x)
    {
        key = x;
        left = NULL;
        right = NULL;
    }
};
 
Node* buildTree(int inorder[], int levelOrder[], int iStart,
                int iEnd, int n);
void printInorder(Node* node)
{
    if (node == NULL)
        return;
    printInorder(node->left);
    cout << node->key << " ";
    printInorder(node->right);
}
int main()
{
 
    int n = 7;
    int in[] = { 4, 8, 10, 12, 14, 20, 22 };
    int level[] = { 20, 8, 22, 4, 12, 10, 14 };
    Node* root = NULL;
    root = buildTree(in, level, 0, n - 1, n);
    printInorder(root);
    cout << endl;
 
    return 0;
}
// } Driver Code Ends
 
/*Complete the function below
Node is as follows:
struct Node
{
    int key;
    struct Node* left, *right;
};
*/
Node* buildTree(int inorder[], int levelOrder[], int iStart,
                int iEnd, int n)
{
    queue<pair<Node*, pair<int, int> > > q;
    unordered_map<int, int> mp;
    for (int i = 0; i < n; i++)
        mp[inorder[i]] = i;
    int idx = 0;
    Node* root = new Node(levelOrder[idx++]);
    q.push({ root, { 0, n - 1 } });
    while (!q.empty()) {
        int m = q.size();
        for (int i = 0; i < m; i++) {
            auto p = q.front();
            q.pop();
            int leftEnd = mp[p.first->key] - 1;
            int rightStart = mp[p.first->key] + 1;
            // check if nodes to added into the left part of
            // q.front()
            if (p.second.first <= leftEnd) {
                p.first->left = new Node(levelOrder[idx++]);
                q.push({ p.first->left,
                         { p.second.first, leftEnd } });
            }
            // check if nodes to added into the right part
            // of q.front()
            if (rightStart <= p.second.second) {
                p.first->right
                    = new Node(levelOrder[idx++]);
                q.push({ p.first->right,
                         { rightStart, p.second.second } });
            }
        }
    }
    return root;
}


Python3




class Node:
    def __init__(self, x):
        self.key = x
        self.left = None
        self.right = None
 
def buildTree(inorder, levelOrder, iStart, iEnd, n):
    q = []
    mp = {}
    for i in range(n):
        mp[inorder[i]] = i
    idx = 0
    root = Node(levelOrder[idx])
    idx += 1
    q.append((root, [0, n - 1]))
    while len(q) != 0:
        m = len(q)
        for i in range(m):
            node, [leftStart, rightEnd] = q.pop(0)
            leftEnd = mp[node.key] - 1
            rightStart = mp[node.key] + 1
            if leftStart <= leftEnd:
                node.left = Node(levelOrder[idx])
                idx += 1
                q.append((node.left, [leftStart, leftEnd]))
            if rightStart <= rightEnd:
                node.right = Node(levelOrder[idx])
                idx += 1
                q.append((node.right, [rightStart, rightEnd]))
    return root
 
def printInorder(node):
    if node is None:
        return
    printInorder(node.left)
    print(node.key, end=" ")
    printInorder(node.right)
 
n = 7
inOrder = [4, 8, 10, 12, 14, 20, 22]
levelOrder = [20, 8, 22, 4, 12, 10, 14]
root = None
root = buildTree(inOrder, levelOrder, 0, n - 1, n)
printInorder(root)


C#




using System;
using System.Collections.Generic;
 
public class Node {
    public int key;
    public Node left;
    public Node right;
 
    public Node(int x)
    {
        key = x;
        left = null;
        right = null;
    }
};
 
public class Gfg
{
    public static Node buildTree(int[] inorder, int[] levelOrder, int iStart,
                int iEnd, int n) {
        Queue<Tuple<Node, Tuple<int, int>>> q = new Queue<Tuple<Node, Tuple<int, int>>>();
        Dictionary<int, int> mp = new Dictionary<int, int>();
        for (int i = 0; i < n; i++)
            mp[inorder[i]] = i;
        int idx = 0;
        Node root = new Node(levelOrder[idx++]);
        q.Enqueue(Tuple.Create(root, Tuple.Create(0, n - 1)));
        while (q.Count > 0) {
            int m = q.Count;
            for (int i = 0; i < m; i++) {
                var p = q.Dequeue();
                int leftEnd = mp[p.Item1.key] - 1;
                int rightStart = mp[p.Item1.key] + 1;
                // check if nodes to added into the left part of
                // q.front()
                if (p.Item2.Item1 <= leftEnd) {
                    p.Item1.left = new Node(levelOrder[idx++]);
                    q.Enqueue(Tuple.Create(p.Item1.left,
                         Tuple.Create(p.Item2.Item1, leftEnd)));
                }
                // check if nodes to added into the right part
                // of q.front()
                if (rightStart <= p.Item2.Item2) {
                    p.Item1.right
                        = new Node(levelOrder[idx++]);
                    q.Enqueue(Tuple.Create(p.Item1.right,
                         Tuple.Create(rightStart, p.Item2.Item2)));
                }
            }
        }
        return root;
    }
 
    public static void printInorder(Node node)
    {
        if (node == null)
            return;
        printInorder(node.left);
        Console.Write(node.key + " ");
        printInorder(node.right);
    }
 
    public static void Main()
    {
        int n = 7;
        int[] inOrder = { 4, 8, 10, 12, 14, 20, 22 };
        int[] levelOrder = { 20, 8, 22, 4, 12, 10, 14 };
        Node root = buildTree(inOrder, levelOrder, 0, n - 1, n);
        printInorder(root);
        Console.WriteLine();
    }
}


Javascript




// THIS CODE IS CONTRIBUTED BY CHANDAN AGARWAL
class Node {
  constructor(x) {
    this.key = x;
    this.left = null;
    this.right = null;
  }
}
 
function buildTree(inorder, levelOrder, iStart, iEnd, n) {
  const q = [];
  const mp = new Map();
  for (let i = 0; i < n; i++) {
    mp.set(inorder[i], i);
  }
  let idx = 0;
  const root = new Node(levelOrder[idx++]);
  q.push([root, [0, n - 1]]);
  while (q.length !== 0) {
    const m = q.length;
    for (let i = 0; i < m; i++) {
      const [node, [leftStart, rightEnd]] = q.shift();
      const leftEnd = mp.get(node.key) - 1;
      const rightStart = mp.get(node.key) + 1;
      if (leftStart <= leftEnd) {
        node.left = new Node(levelOrder[idx++]);
        q.push([node.left, [leftStart, leftEnd]]);
      }
      if (rightStart <= rightEnd) {
        node.right = new Node(levelOrder[idx++]);
        q.push([node.right, [rightStart, rightEnd]]);
      }
    }
  }
  return root;
}
 
function printInorder(node) {
  if (node === null) return;
  printInorder(node.left);
  console.log(node.key + " ");
  printInorder(node.right);
}
 
const n = 7;
const inOrder = [4, 8, 10, 12, 14, 20, 22];
const levelOrder = [20, 8, 22, 4, 12, 10, 14];
let root = null;
root = buildTree(inOrder, levelOrder, 0, n - 1, n);
printInorder(root);
console.log("");


Java




// Java Program for the above approach
 
import java.util.*;
 
class Node {
    public int key;
    public Node left;
    public Node right;
 
    public Node(int x)
    {
        key = x;
        left = null;
        right = null;
    }
}
 
// Pair Class of Java
class Pair<K, V> {
    private final K key;
    private final V value;
 
    public Pair(K key, V value) {
        this.key = key;
        this.value = value;
    }
 
    public K getKey() {
        return key;
    }
 
    public V getValue() {
        return value;
    }
}
class Gfg {
    public static Node buildTree(int[] inorder, int[] levelOrder, int iStart,
                int iEnd, int n) {
        Queue<Pair<Node, Pair<Integer, Integer>>> q = new LinkedList<>();
        HashMap<Integer, Integer> mp = new HashMap<>();
        for (int i = 0; i < n; i++)
            mp.put(inorder[i], i);
        int idx = 0;
        Node root = new Node(levelOrder[idx++]);
        q.add(new Pair<>(root, new Pair<>(0, n - 1)));
        while (!q.isEmpty()) {
            int m = q.size();
            for (int i = 0; i < m; i++) {
                var p = q.poll();
                int leftEnd = mp.get(p.getKey().key) - 1;
                int rightStart = mp.get(p.getKey().key) + 1;
                // check if nodes to added into the left part of
                // q.front()
                if (p.getValue().getKey() <= leftEnd) {
                    p.getKey().left = new Node(levelOrder[idx++]);
                    q.add(new Pair<>(p.getKey().left,
                         new Pair<>(p.getValue().getKey(), leftEnd)));
                }
                // check if nodes to added into the right part
                // of q.front()
                if (rightStart <= p.getValue().getValue()) {
                    p.getKey().right
                        = new Node(levelOrder[idx++]);
                    q.add(new Pair<>(p.getKey().right,
                         new Pair<>(rightStart, p.getValue().getValue())));
                }
            }
        }
        return root;
    }
 
    public static void printInorder(Node node)
    {
        if (node == null)
            return;
        printInorder(node.left);
        System.out.print(node.key + " ");
        printInorder(node.right);
    }
     
    // Driver Code
    public static void main(String[] args)
    {
        int n = 7;
        int[] inOrder = { 4, 8, 10, 12, 14, 20, 22 };
        int[] levelOrder = { 20, 8, 22, 4, 12, 10, 14 };
        Node root = buildTree(inOrder, levelOrder, 0, n - 1, n);
        printInorder(root);
        System.out.println();
    }
}
 
// This code is contributed by codebraxnzt


Output

4 8 10 12 14 20 22 

Time complexity: O(N) 
Auxiliary Space: O(N)



Last Updated : 29 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads